Material Engineering and Mechanical Manufacturing

Optimization and damping performance of constrained damping boring bar

  • LIU Yang ,
  • LIU Zhanqiang ,
  • SONG Qinghua
Expand
  • Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China

Received date: 2015-07-17

  Revised date: 2015-08-28

  Online published: 2015-09-06

Supported by

National Natural Science Foundation of China (51425503, 51375272, U1201245);Major Science and Technology Program of High-end CNC Machine Tools and Basic Manufacturing Equipment (2015ZX04005008);Taishan Scholar Special (TS20130922)

Abstract

The constrained damping boring bar can effectively reduce the cutting chatter affecting the surface quality and accuracy in hole machining, but the effect is not significant because the mechanism has not been fully found out. The theoretical and experimental research of the structure optimization, optimal material selection and vibration damping characteristic of the constrained damping boring bar is finished in this paper. Firstly, the dynamics model of the constrained damping boring bar is established through Kelvin-Voigt's viscoelastic mechanics model theory, and it is proved that the increase of static stiffness and loss factor of the boring bar can enhance the vibration damping performance to improve the quality of machining. Secondly, structure optimization and optimal material selection are completed based on the static stiffness and loss factor theory formula, and the result shows that there is an optimal size range that can reduce the vibration on the main working frequency domain, then it is shown that the elastic modulus of damping layer should be reduced while the elastic modulus of constraining layer and the material loss factor of damping layer should be increased. Finally, four constrained damping boring bars with different materials are designed and manufactured, and the modal experimental results of the static stiffness and loss factor have little difference with the theoretical calculation results. Further study of the influence of material and cutting parameters on the vibration damping performance in machining shows that constrained damping boring bars can effectively reduce the radial vibration to improve the surface quality. The radial vibration of constrained damping boring bars with different materials has great differences in cutting process, and the radial vibration acceleration of the optimized steel-PMMA-carbide boring bar is smaller and more stable at different cutting depths and spindle speeds.

Cite this article

LIU Yang , LIU Zhanqiang , SONG Qinghua . Optimization and damping performance of constrained damping boring bar[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(6) : 1992 -2002 . DOI: 10.7527/S1000-6893.2015.0241

References

[1] 刘立佳, 刘献礼, 许成阳. 减振镗杆振动控制研究综述[J]. 哈尔滨理工大学学报, 2014, 19(2):12-18. LIU L J, LIU X L, XU C Y. Vibration control review of damping boring bar[J]. Journal of Harbin University of Science and Technology, 2014, 19(2):12-18(in Chinese).
[2] 王珉, 区炳显, 昝涛, 等. 镗杆颤振控制技术发展综述[J]. 北京工业大学学报, 2011, 37(8):1143-1147. WANG M, OU B X, ZAN T, et al. Summary of boring bar chatter control technology[J]. Journal of Beijing University of Technology, 2011, 37(8):1143-1147(in Chinese).
[3] AKESSON H, SMIMOVA T, CLAESSON I. On the development of a simple and robust active control system for boring bar vibration in industry[J]. International Journal of Acoustics and Vibration, 2007, 12(4):139-152.
[4] 刘鹏. 压电智能镗杆振动主动控制的理论与实验研究[D]. 长春:吉林大学, 2006:22-35. LIU P. Theoretical and experimental study of active vibration control of intelligent piezoelectric boring bar[D]. Changchun:Jilin University, 2006:22-35(in Chinese).
[5] HAHN R S. Design of Lanchester damper for elimination of metal-cutting chatter[J]. Transctions of ASME, 1951, 73(3):201-213.
[6] EMA S, MARUI E. Suppression of chatter vibration of boring tools using impact dampers[J]. International Journal of Machine Tools and Manufacture, 2000, 40(8):1141-1156.
[7] HWANG H Y, KIM J K. Design and manufacture of a carbon fiber epoxy rotating boring bar[J]. Composite Structures, 2003, 60(1):115-124.
[8] SOOVERE J, DRAKE M L. Aerospace structures technology damping design guide. Volume 1. Technology review[R]. Burbank:Lockheed-California Co Burbank, 1985.
[9] 秦柏. 阻尼动力减振镗杆动态特性仿真与优化设计研究[D]. 哈尔滨:哈尔滨理工大学, 2009:14-25. QIN B. Dynamic characteristics analysis and optimization design of damping boring bar[D]. Harbin:Harbin University of Science and Technology, 2009:14-25(in Chinese).
[10] 杨加明, 张义长, 吴丽娟. 多层黏弹性复合材料结构阻尼性能优化设计[J]. 航空学报, 2011, 32(2):265-270. YANG J M, ZHANG Y C, WU L J. Multilayered viscoelastic damping properties of composite structural optimization design[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2):265-270(in Chinese).
[11] RUBIO L, LOYA J A, MIGUELEZ M H. Optimization of passive vibration absorbers to reduce chatter in boring[J]. Mechanical Systems and Signal Processing, 2013, 41(1):691-704.
[12] ZHANG S H, CHEN H L. A study on the damping characteristics of laminated composites with integral viscoelastic layers[J]. Composite Structures, 2006, 74(1):63-69.
[13] QI L F, DANIEL L, CORNEL M N. Anti-vibration engineering in internal turning using a carbon nanocomposite damping coating produced by PECVD Process[J]. Journal of Material Engineering and Performance, 2014, 23(2):506-517.
[14] 谭亮红, 陈红, 罗仡科. 阻尼结构对复合结构阻尼性能的影响[J]. 橡胶工业, 2014, 61(2):84-88. TAN L H, CHEN H, LUO Y K. Impact factors of damping structural to damping properties of composite structures[J]. Rubber Industry, 2014, 61(2):84-88(in Chinese).
[15] 夏峰, 刘战强, 宋清华. 约束阻尼结构减振镗杆[J]. 航空学报, 2014, 35(9):2652-2659. XIA F, LIU Z Q, SONG Q H. Boring bar with constrained damping[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2652-2659(in Chinese).
[16] UR-RASHID M. Characterization of dynamic elastic modulus and damping property of CNx coating material by experimental modal analysis and finite element approach[D]. Stockholm:KTH Royal Institute of Technology, 2012:24-33.
[17] RIVIN E I, KANG H. Enhancement of dynamic stability of cantilever tooling structures[J]. International Journal of Machine Tools and Manufacture, 1992, 32(4):539-561.
[18] MARYNOWSKI K, KAPITANIAK T. Kelvin-Voigt versus Bürgers internal damping in modeling of axially moving viscoelastic web[J]. International Journal of Non-Linear Mechanics, 2002, 37(7):1147-1161.
[19] KANASE S S, PATIL J S, JADHAV S M. Improvement of Ra value of boring operation using passive damper[J]. The International Journal of Engineering and Science, 2013, 2(7):103-108.
[20] 王军, 吴凤和. 层状复合结构镗刀杆设计与性能研究[J]. 中国机械工程, 2013, 24(6):711-715. WANG J, WU F H. Design and research of composite layered boring bar[J]. China Mechanical Engineering, 2013, 24(6):711-715(in Chinese).
[21] 何将三. 层复合阻尼镗杆的动力学分析[J]. 中国有色金属学报, 1995, 5(3):144-148. HE J S. Dynamics analysis of composite damping boring bar[J]. Chinese Journal of Nonferrous Metals, 1995, 5(3):144-148(in Chinese).
[22] BALL III G L, SALYER I O. Development of a viscoelastic composition having superior vibration-damping capability[J]. The Journal of the Acoustical Society of America, 1966, 39(4):663-673.
[23] DAGHINI L, ARCHENTI A, NICOLESCU C M. Design, implementation and analysis of composite material dampers for turning operations[J]. World Academy of Science, Engineering and Technology, 2009, 53(4):613-620.
[24] 杨昆, 于英华. 泡沫铝/环氧树脂复合材料阻尼性能的研究[J]. 热加工工艺, 2013, 42(16):110-112. YANG K, YU Y H. Research on properties of aluminum foam/epoxy composite damping material[J]. Hot Working Technology, 2013, 42(16):110-112(in Chinese).
[25] FU Q, LORITE G S, RASHID M U. Suppressing tool chatter with novel multi-layered nanostructures of carbon based composite coatings[J]. Journal of Materials Processing Technology, 2015, 223(15):292-298.

Outlines

/