Fluid Mechanics and Flight Mechanics

Numerical simulation of trapezoidal wing wind tunnel model

  • WANG Yuntao ,
  • LI Wei ,
  • LI Song ,
  • Meng Dehong
Expand
  • 1. Computational Aerodynamics Institute of China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2015-06-25

  Revised date: 2015-08-07

  Online published: 2015-08-31

Supported by

National Basic Research Program of China:Mechanism and Method for Drag Reduction of Trunk Liner (2014CB744800);NUAA Fundamental Research Funds (NS2013013);Fundamental Research Funds for the Central Universities (NP2014602);Aeronautical Science Foundation of China (2013ZA52009)

Abstract

Based on the Reynolds-averaged Navier-Stokes(RANS) equations and structured grid technology, with second-order MUSCL scheme, combined with k-ω shear stress transport (SST) turbulence model and γ-Reθ transition model, the influence of the support brackets included in the wind tunnel model on the aerodynamic characteristics of the high lift trapezoidal wing (Trap wing) is studied. Firstly, the numerical methods are introduced briefly. Then, the wind tunnel models of the Trap wing configuration and the experimental activities are described. And then, on the basis of previous grid convergence study, the influences of the support brackets included in the wind tunnel model on the aerodynamic characteristics of the Trip wing configuration are studied with "fully turbulent" and transition modes. Finally, the conclusions are presented. Compared with the bracket-off numerical results, with "fully turbulent" mode, the support brackets decrease the lift coefficients, drag coefficients and nose-down momentum coefficient, resulting in the earlier stall angle. Compared with the experimental data, the bracket-on numerical results with the transition model are in very good agreement with test data and further study on the simulation technology of aerodynamic characteristics near the stall angle for Trap wing wind tunnel model is needed.

Cite this article

WANG Yuntao , LI Wei , LI Song , Meng Dehong . Numerical simulation of trapezoidal wing wind tunnel model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(4) : 1159 -1165 . DOI: 10.7527/S1000-6893.2015.0226

References

[1] ANTON P S, JOHNSON D J, BLOCK M, et al. Wind tunnel and propulsion test facilities:supporting analyses to an assessment of NASA's capabilities to serve national needs:The RAND corporation technical report TR-134[R]. Santa Monica:The RAND Corporation, 2004.
[2] JOHNSON F T, TINOCO E N, YU N J. Thirty years of development and application of CFD at Boeing commercial airplane seattle[J]. Computers & Fluids, 2005, 34(10):1115-1151.
[3] VASSBERG J C, TINOCO E N, MANI M, et al. Summary of the fourth AIAA CFD drag prediction workshop:AIAA-2010-4547[R]. Reston:AIAA, 2010.
[4] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the fifth AIAA CFD drag prediction workshop:AIAA-2013-0046[R]. Reston:AIAA, 2013.
[5] RIMSEY C L, YING S X. Prediction of high lift:review of present CFD capability[J]. Progress in Aerospace Sciences, 2002, 38:145-180.
[6] TINOCO E N, BOGUE D R, KAO T J, et al. Progress toward CFD for full flight envelope[J]. The Aeronautical Journal, 2005, 109:451-460.
[7] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:a path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Hampton:NASA, 2014.
[8] RUDNIL R. CFD assessment for high lift flows in the European project EUROLIFT:AIAA-2003-3794[R]. Reston:AIAA, 2003.
[9] RUDNIK R, VON GEYR H FRHR. The European high lift project EUROLIFT Ⅱ-objectives, approach, and structure:AIAA-2007-4296[R]. Reston:AIAA, 2007.
[10] SLOTNICK J P, HANNON J A, CHAFFIN M. Overview of the first AIAA CFD high lift prediction workshop (invited):AIAA-2011-0862[R]. Reston:AIAA, 2011.
[11] RUMSEY C L, LONG M, STUEVER R A. Summary of the first AIAA CFD high lift prediction workshop(invited):AIAA-2011-0939[R]. Reston:AIAA, 2011.
[12] SCLAFANI A J, SLOTNICK J P, VASSBERG J C, et al. OVERFLOW analysis of the NASA trap wing model from the first high lift prediction workshop:AIAA-2011-0866[R]. Reston:AIAA, 2011.
[13] SCLAFANI A J, SLOTNICK J P, VASSBERG J C, et al. Extended OVERFLOW analysis of the NASA trap wing wind tunnel model:AIAA-2012-2919[R]. Reston:AIAA, 2012.
[14] 王运涛, 李松, 孟德虹, 等. 梯形翼高升力构型的数值模拟技术研究[J]. 航空学报, 2014, 35(12):3213-3221. WANG Y T, LI S, MENG D H, et al. Numerical study on simulation technology of the high lift trapezoidal wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3213-3221(in Chinese).
[15] 王运涛, 李松, 王光学, 等. 不同襟翼偏角梯形翼构型气动特性数值模拟[J]. 航空学报, 2015, 36(6):1823-1829. WANG Y T, LI S, WANG G X, et al. Numerical simulation of the aerodynamic characteristics of the trapezoidal wing configuration with different flap angles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1823-1829(in Chinese).
[16] 王运涛, 王光学, 张玉伦. TRIP2.0软件的确认:DPWⅡ复杂组合体的数值模拟[J]. 航空学报, 2008, 29(1):34-40. WANG Y T, WANG G X, ZHANG Y L. Validation of TRIP2.0:numerical simulation of DPWⅡ complex configuration[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1):34-40(in Chinese).
[17] VAN LEER B. Towards the ultimate conservation difference scheme Ⅱ, monoticity and conservation combined in a second order scheme[J]. Journal of Computational Physics, 1974, 14(4):361-370.
[18] MENTER F R. Two equation eddy viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605.
[19] MENTER F R, LANGTRY R B. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[20] JOHNSON P L, JONES K M, MADSON M D. Experimental Investigation of a simplified 3D high lift configuration of civil transport aircraft:AIAA-2008-0410[R]. Reston:AIAA, 2008.

Outlines

/