Fluid Mechanics and Flight Mechanics

Numerical research of high frequency vibration effect on subsonic open cavity macro-noise

  • NING Fangli ,
  • SHI Hongbing ,
  • QIU Lianfang ,
  • WEI Jin'gang
Expand
  • School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2015-05-14

  Revised date: 2015-08-06

  Online published: 2015-08-18

Supported by

National Natural Science Foundation of China (51075329,51375385); Aeronautical Science Foundation of China (20131553019); Natural Science Basic Research Plan in Shaanxi Province (2014JM2-6116); The Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (Z2015069)

Abstract

Cavity flow phenomena widely exist in all kinds of aerospace vehicles. Research on the complicated physical phenomena in cavities is of great importance to engineering applications. Large eddy simulation method is used to simulate the open cavity noise. We apply high frequency wall vibration at the leading edge of the cavity and investigate its influence on the mode and the noise inside the cavity. The study shows that the peak of the pure tone noise inside the cavity decreases as the frequency of the wall vibration increases. When the vibration frequency at the leading edge reaches 4000 Hz, the peak of the pure tone noise of the main and second mode in the interior of the cavity can be reduced by 15 dB and 17 dB respectively. Therefore, the peak of the pure tone noise inside the cavity can be reduced significantly with the high frequency wall vibration applied at the leading edge of the cavity. This work will pave the way to extend the applications of subsonic open cavities.

Cite this article

NING Fangli , SHI Hongbing , QIU Lianfang , WEI Jin'gang . Numerical research of high frequency vibration effect on subsonic open cavity macro-noise[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(12) : 3843 -3852 . DOI: 10.7527/S1000-6893.2015.0223

References

[1] Rossiter J E, Kurn A. Wind tunnel measurements of the unsteady pressures in and behind a bomb bay[R]. Technical Report AERO. 2677. London:Royal Aircraft Establishment, 1963.
[2] Rossiter J E. Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[R]. London:Royal Aircraft Establishment, 1964.
[3] Smith B R, Welterlen T J, Maines B H, et al. Weapons bay acoustic suppression from rod spoilers, AIAA-2002-0662[R]. Reston:AIAA, 2002.
[4] Vakili A D, Gauthier C. Control of cavity flow by upstream mass-injection[J]. Journal of Aircraft, 1994, 31(1):169-174.
[5] Grove J E, Birkbeck R M, Kreher J M, et al. Acoustic and separation characteristics with bay leading edge blowing, AIAA-2000-1904[R]. Reston:AIAA, 2000.
[6] Bueno P C, Unalmis O H, Clemens N T, et al. The effects of upstream mass injection on a Mach 2 cavity flow, AIAA-2002-0663[R]. Reston:AIAA, 2002.
[7] Shaw L. Active control for cavity acoustics, AIAA-1998-2347[R]. Reston:AIAA, 1998.
[8] Li Y G, Fan K T, Zhang L Z, et al. Development of high frequency piezoelectric ceramic resonator[J]. Piezoelectrics & Acoustooptics, 2001, 23(3):183-185(in Chinese).李月国,范坤泰,张录州,等.高频压电陶瓷谐振器的研制[J].压电与声光, 2001, 23(3):183-185.
[9] Henshaw M J. M219 cavity case[R]. DTIC Document. East Riding of Yorkshire:British Aerospace, 2000.
[10] Ashworth R M. Prediction of acoustic resonance phenomena for weapon bays using detached eddy simulation[J]. Aeronautical Journal, 2005, 109(1102):631-638.
[11] Ma M S, Zhang P H, Deng Y Q, et al. Numerical simulation investigation of supersonic cavity flow[J]. Acta Aerodynamica Sinica, 2008, 26(3):388-393(in Chinese).马明生,张培红,邓有奇,等.超声速空腔流动数值模拟研究[J].空气动力学学报, 2008, 26(3):388-393.
[12] Zhang J, Morishita E, Okunuki T, et al. Experimental and computational investigation of supersonic cavity flows, AIAA-2001-1755[R]. Reston:AIAA, 2001.
[13] Wu J F, Luo X F, Fan Z L. Flow control method to improve cavity flow and store separation characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1840-1845(in Chinese).吴继飞,罗新福,范召林.内埋式弹舱流场特性及武器分离特性改进措施[J].航空学报, 2009, 30(10):1840-1845.
[14] Chen X, Sandham N D, Zhang X. Cavity flow noise predictions[R]. Final Report for MSTARR DARP. Southampton:University of Southampton, 2007.
[15] Xiao Z X. Complex Navier-Stokes equations numerical simulation of flow and turbulence model application research[D]. Xi'an:Northwestern Polytechnical University, 2003(in Chinese).肖志祥.复杂流动Navier-Stokes方程数值模拟及湍流模型应用研究[D].西安:西北工业大学, 2003.
[16] Felten F, Fautrelle Y, Terrail Y D, et al. Numerical modelling of electromagnetically-driven turbulent flows using LES methods[J]. Applied Mathematical Modelling, 2004, 28(1):15-27.
[17] Abbott M B, Basco D R. Computational fluid dynamics an introduction for engineers[R]. NASA STI/Recon Technical Report A. Harlow:International Institute for Hydraulic and Environmental Engineering, 1989.
[18] Galperin B, Orszag S A. Large eddy simulation of complex engineering and geophysical flows[M]. Oxford:Cambridge University Press, 1993:36-51.
[19] Doris L, Tenaud C, Phuoc L T. LES of spatially developing 3D compressible mixing layer[J]. Comptes Rendus de l'Académie des Sciences-Series ⅡB-Mechanics, 2000, 328(7):567-573.
[20] Boris J P, Grinstein F F, Oran E S, et al. New insights into large eddy simulation[J]. Fluid Dynamics Research, 1992, 10(4-6):199-228.
[21] Kim W, Menon S. A new dynamic one-equation subgrid scale model for large eddy simulations, AIAA-1995-0356[R]. Reston:AIAA, 1995.
[22] Cattafesta I L, Garg S, Choudhari M, et al. Active control of flow-induced cavity resonance, AIAA-1997-1804[R]. Reston:AIAA, 1997.

Outlines

/