ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Planetary rover's tractive performance model based on similarity theory
Received date: 2015-06-09
Revised date: 2015-07-25
Online published: 2015-08-05
Supported by
National Natural Science Foundation of China (51375199)
It is important to ensure reliable mobility performance and avoid excessive sinkage for planetary rover. Gravity acceleration on the moon and mars is about one-sixth and two-fifths of the earth, respectively; however, there are certain limitations to simulate low gravity environment on the earth. Therefore, based on similarity principle and terramechanics theory, we present a dimensional analysis on wheel-soil system. A scaling planetary rover has been developed, which is used for eliminating the equivalent influence of the low gravity in the ground experiments. Soil bin tests of the planetary rover are conducted on two different terrains, and the sinkage and tractive characteristics of planetary model rover have also been analyzed. By combining the linearization approach on contact stress distribution between wheel and soil interface, a simplified drawbar pull model is established, which is related to the wheel sinkage and slip ratio. The model is validated through the soil bin testing data and results indicate that the proposed model has a higher accuracy in the mobility performance assessment, including wheel sinkage and drawbar pull.
HUANG Han , LI Jianqiao , DANG Zhaolong , WU Baoguang , ZOU Meng . Planetary rover's tractive performance model based on similarity theory[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(6) : 1974 -1982 . DOI: 10.7527/S1000-6893.2015.0217
[1] WONG J Y. Theory of ground vehicles[M]. Hoboken, NJ:John Wiley & Sons, 2008:133-134.
[2] WONG J Y. Terramechanics and off-road vehicle engineering[M]. 2nd ed. Oxford:Elsevier, 2010:84-85.
[3] 金大玮, 李建桥, 党兆龙, 等. 滑转条件下月球车轮沉陷模型研究[J]. 航空学报, 2013, 34(5):1215-1221. JIN D W, LI J Q, DANG Z L, et al. Study on model for sinkage of lunar rover wheel under the condition of slip[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1215-1221(in Chinese).
[4] 崔平远, 徐瑞, 朱圣英, 等. 深空探测器自主技术发展现状与趋势[J]. 航空学报, 2014, 35(1):13-28. CUI P Y, XU R, ZHU S Y, et al. State of the art and development trends of on-board autonomy technology for deep space explorer[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):13-28(in Chinese).
[5] 徐文福, 梁斌, 李成, 等. 空间机器人微重力模拟实验系统研究综述[J]. 机器人, 2009, 31(1):88-96. XU W F, LIANG B, LI C, et al. A review on simulated micro-gravity experiment systems of space robot[J]. Robot, 2009, 31(1):88-96(in Chinese).
[6] KURODA Y, TESHIMA T, SATO Y, et al. Mobility performance evaluation of planetary rover with similarity model experiment[C]//2004 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 2004:2098-2103.
[7] WONG J Y. Predicting the performances of rigid rover wheels on extraterrestrial surfaces based on test results obtained on earth[J]. Journal of Terramechanics, 2012, 49(1):49-61.
[8] WONG J Y, KOBAYASHI T. Further study of the method of approach to testing the performance of extraterrestrial rovers/rover wheels on earth[J]. Journal of Terramechanics, 2012(in press).
[9] 江磊, 郭建娟, 陈传海. 基于相似理论的月球车牵引性能模型试验[J]. 中国机械工程, 2009, 23(20):2828-2831. JIANG L, GUO J J, CHEN C H. Scaling model experiment of lunar rover's mobility performance based on similarity model theory[J]. China Mechanical Engineering, 2009, 23(20):2828-2831(in Chinese).
[10] 李萌, 高峰, 孙鹏, 等. 基于相似理论的月球车月面牵引性能预测[J]. 北京航空航天大学学报, 2013, 39(2):230-234. LI M, GAO F, SUN P, et al. Prediction of lunar rover's moon tractive performance based on similitude theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(2):230-234(in Chinese).
[11] REINA G, OJEDA L, MILELLA A, et al. Wheel slippage and sinkage detection for planetary rovers[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(2):185-195.
[12] LYASKO M. Slip sinkage effect in soil-vehicle mechanics[J]. Journal of Terramechanics, 2010, 47(1):21-31.
[13] 李建桥, 黄晗, 王颖, 等. 松软地面机器系统研究进展[J]. 农业机械学报, 2015, 46(5):130-145. LI J Q, HUANG H, WANG Y, et al. Development on research of soft-terrain machine systems[J].Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5):130-145(in Chinese).
[14] GAO H B, GUO J L, DING L, et al. Longitudinal skid model for wheels of planetary exploration rovers based on terramechanics[J]. Journal of Terramechanics, 2013, 50(5):327-343.
[15] DING L, GAO H B, DENG Z Q, et al. New perspective on characterizing pressure-sinkage relationship of terrains for estimating interaction mechanics[J]. Journal of Terramechanics, 2014, 52(2):57-76.
[16] TAHERI S, SANDU C, TAHERI S, et al. A technical survey on terramechanics models for tire-terrain interaction used in modeling and simulation of wheeled vehicles[J]. Journal of Terramechanics, 2015, 57(1):1-22.
[17] 丁亮亮, 肖杰, 宗魏, 等. 与沉陷相关联的星球车挂钩牵引力模型研究[J]. 农业机械学报, 2014, 45(12):37-42. DING L L, XIAO J, ZONG W, et al. Drawbar pull model of planetary rover associated with subsidence[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(12):37-42(in Chinese).
[18] IAGNEMMA K, KANG S, SHIBLY H, et al. Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers[J]. IEEE Transactions on Robotics, 2004, 20(5):921-927.
[19] SHIBLY H, IAGNEMMA K, DUBOWSKY S. An equivalent soil mechanics formulation for rigid wheels in deformable terrain, with application to planetary exploration rovers[J]. Journal of Terramechanics, 2005, 42(1):1-13.
[20] 王洋, 李建桥, 党兆龙, 等. 松散地面上车辙表面的非接触式激光测量[J]. 农业机械学报, 2013, 44(7):264-268. WANG Y, LI J Q, DANG Z L, et al. Non-contact laser measurement of rutting surface on loose ground[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(7):264-268(in Chinese).
[21] DING L, GAO H B, DENG Z Q, et al. Experimental study and analysis on driving wheels' performance for planetary exploration rovers moving in deformable soil[J]. Journal of Terramechanics, 2011, 48(1):27-45.
[22] 邹猛, 李建桥, 李因武, 等. 刚性轮-月壤相互作用预测模型及试验研究[J]. 农业工程学报, 2007, 23(12):119-123. ZOU M, LI J Q, LI Y W, et al. Prediction model and experimental study on the interaction of rigid wheel and lunar soil[J]. Chinese Society for Agricultural Machinery, 2007, 23(12):119-123(in Chinese).
[23] IIZUKA K, SATO Y, KURODA Y, et al. Experimental study of wheeled forms for lunar rover on slope terrain[C]//9th IEEE International Workshop on Advanced Motion Control. Piscataway, NJ:IEEE Press, 2006:266-271.
/
〈 | 〉 |