ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Investigation of virtual flight testing technique based on 2.4 m transonic wind tunnel
Received date: 2015-03-09
Revised date: 2015-07-01
Online published: 2015-07-31
Supported by
National Natural Science Foundation of China(91216203);National Basic Research Program of China(61389)
The wind tunnel-based virtual flight testing(WTBVFT) is an experimental technique, which is used to simulate vehicles' maneuvering movements in wind tunnels efficiently, to obtain the coupling characteristics between aerodynamic and kinetic behavior and to discover the coupling mechanism, but also to implement the consistent research about the integration of aerodynamics and flight mechanics. In this paper, the experimental techniques of WTBVFT platform in 2.4 m transonic wind tunnel are introduced briefly that consist of the similarity law and simulation methods, the supporting means for test models, the measuring skills of aerodynamic parameters and motion parameters, as well as the drive and control techniques, and then some experiments of typical missiles' model using WTBVFT are presented, such as open-loop control tests, closed-loop control tests for angle of attack and normal acceleration, pitching and rolling coupled motion and their decoupled control tests, and verification tests of real-flight. The tests' results show that the motions of WTBVFT platform are very agile, the measurement tests of aerodynamic parameters and the motion parameters are credible, and WTBVFT platform is able to repeat the real-flight of missile effectively and has the capability to conduct closed-control and decoupled control tests. WTBVFT has the primarily experimental ability for integrated simulation of aerodynamics and flight dynamics for missile model, and provides a technical basis for verification and optimization of flight control law, data correction and application, and development of WTBVFT for flight vehicles with complex shape.
ZHAO Zhongliang , WU Junqiang , LI Hao , ZHOU Weiqun , MAO Daiyong , YANG Haiyong . Investigation of virtual flight testing technique based on 2.4 m transonic wind tunnel[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(2) : 504 -512 . DOI: 10.7527/S1000-6893.2015.0196
[1] ERICSSON L E, BEYERS M E. Conceptual fluid/motion coupling in the Herbst supermaneuver[J]. Journal of Aircraft, 1997, 34(3):271-277.
[2] ERICSSON L E, BEYERS M E. Nonlinear rate and amplitude effects on a generic combat aircraft model[J]. Journal of Aircraft, 2000, 37(2):207-213.
[3] NELSON R C, PELLETIER A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Sciences, 2003, 39(3):185-248.
[4] GREENWELL D T. A review of unsteady aerodynamic modelling for flight dynamics of manoeuvrable aircraft:AIAA-2004-5276[R]. Reston:AIAA, 2004.
[5] CHANBERS J R, HALL R M. History review of uncommanded lateral-directional mitions at transonic conditons[J]. Journal of Aircraft, 2004, 41(3):436-447.
[6] RATLIFF C L, MARQUART E J. Bridging the gap between ground and flight tests:virtual flight testing(VFT):AIAA-1995-3875[R]. Reston:AIAA, 1995.
[7] RATLIFF C L, MARQUART E J. An assessment of a potential test technique:Virtual flight testing(VFT):AIAA-1995-3415[R]. Restion:AIAA, 1995.
[8] GEBERT G, KELLY J, LOPEZ J. Wind tunnel based virtual flight testing:AIAA-2000-0829[R]. Reston:AIAA, 2000.
[9] GEBERT G, KELLY J, LOPEZ J. Virtual flight testing in a ground test facility:AIAA-2000-4019[R]. Reston:AIAA, 2000.
[10] LAWRENCE F C, MILLS B H. Status update of the AEDC wind tunnel virtual flight testing development program:AIAA-2002-0168[R]. Reston:AIAA, 2002.
[11] MAGILL J C, WEHEF S D. Initial test of a wire suspension mount for missile virtual flight testing:AIAA-2002-0169[R]. Reston:AIAA, 2002.
[12] MAGILL J C, CATALDI P, MORENCY J R, et al. Design of a wire suspension system for dynamic testing in AEDC 16T:AIAA-2003-0452[R]. Reston:AIAA, 2003.
[13] MAGILL J C, CATALDI P, MORENCY J R, et al. Active yaw control with a wire suspension system for dynamic wind tunnel testing:AIAA-2005-1295[R]. Reston:AIAA, 2005.
[14] MAGILL J C, CATALDI P, MORENCY J R, et al. Demonstration of a wire suspension for wind-tunnel virtual flight testing[J]. Journal of Spacecraft and Rockets, 2009, 46(3):624-633.
[15] PATTINSON J, LOWENBERG M H, GOMAN M G. A multi-degree-of-freedom rig for the wind tunnel determination of dynamic data:AIAA-2009-5727[R]. Reston:AIAA, 2009.
[16] 胡静, 李潜. 风洞虚拟飞行技术初步研究[J]. 实验流体力学, 2010, 24(1):95-99. HU J, LI Q. Primary investigation of the virtual flight testing techniques in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1):95-99(in Chinese).
[17] 谢志江, 孙小勇, 孙海生, 等. 低速风洞动态试验的高速并联机构设计及动力学分析[J]. 航空学报, 2013, 34(3):487-494. XIE Z J, SUN X Y, SUN H S, et al. Mechanism design and dynamics analysis of high speed parallel robot for dynamic test in low speed wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3):487-494(in Chinese).
[18] 孙海生, 岑飞, 聂博文, 等. 水平风洞模型自由飞试验技术研究现状及展望[J]. 实验流体力学, 2011, 25(4):103-108. SUN H S, CEN F, NIE B W, et al. Present research status and prospective application of wind tunnel free-flight test technique[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4):103-108(in Chinese).
[19] 李浩. 风洞虚拟飞行试验相似准则和模拟方法研究[D]. 绵阳:中国空气动力研究与发展中心, 2012. LI H. Study on the similarity criteria and simulation method of the wind tunnel based virtual flight testing[D]. Mianyang:China Aerodynamics Research and Development Center, 2012(in Chinese).
[20] 李浩, 赵忠良, 范召林. 风洞虚拟飞行试验模拟方法研究[J]. 实验流体力学, 2011, 25(6):72-76. LI H, ZHAO Z L, FAN Z L. Simulation method for wind tunnel based virtual flight testing[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6):72-76(in Chinese).
[21] 耿玺, 史志伟. 面向过失速机动的风洞动态试验相似准则探讨[J]. 实验流体力学, 2011, 25(3):41-45. GENG X, SHI Z W. Similarity criterion of the wind tunnel test for the post-stall maneuver[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3):41-45(in Chinese).
[22] 陶洋, 范召林, 吴继飞. 基于CFD的方形截面导弹纵向虚拟飞行模拟[J]. 力学学报, 2010, 42(2):169-176. TAO Y, FAN Z L, WU J F. CFD based virtual flight simulation of square crosssection missile with control in longitudinal flight[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2):169-176(in Chinese).
[23] 达兴亚, 陶洋, 赵忠良. 基于预估校正和嵌套网格的虚拟飞行数值模拟[J]. 航空学报, 2012, 33(6):977-983. DA X Y, TAO Y, ZHAO Z L. Numerical simulation of virtual flight based on prediction-correction coupling method and chimera grid[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6):977-983(in Chinese).
[24] 向光伟, 谢斌, 赵忠良, 等. 2.4 m×2.4 m跨声速风洞虚拟飞行试验天平研制[J]. 实验流体力学, 2014, 28(1):65-69. XIANG G W, XIE B, ZHAO Z L, et al. Development of virtual flight test balance for 2.4 m×2.4 m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(1):65-69(in Chinese).
/
〈 | 〉 |