Fluid Mechanics and Flight Mechanics

Dynamic bifurcation characteristics analysis on fixed-canard dual-spin projectiles

  • XU Nuo ,
  • YU Jianqiao ,
  • WANG Yafei
Expand
  • School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

Received date: 2015-02-03

  Revised date: 2015-04-01

  Online published: 2015-07-14

Supported by

National Natural Science Foundation of China (61350010)

Abstract

The nonlinear dynamic bifurcation characteristics of a fixed-canard dual-spin projectile are analyzed, and the influence of the system parameters on the dynamic bifurcation characteristics are researched. Based on the asymmetry characteristic of fixed-canard dual-spin projectiles, the variations of equilibrium points with installation angle of the homodromous fixed-canard are presented by the numerical method, and then the bifurcation diagrams are obtained. There are three stable equilibrium points, only one of which is the expected stable equilibrium point, so the range of homodromous fixed-canard installation angle needs to be limited to make the fixed-canard dual-spin projectile stable. Then the bifurcation diagrams with various system parameters are drawn when the trajectory correction component rotate periodically and when it is fixed, the influence on bifurcation characteristics of the system by structural and aerodynamic parameters are summarized. The results indicate that the aerodynamic parameters and the flight velocity of the fixed-canard dual-spin projectile have a great influence on the bifurcation characteristics of the system, so the parameters of system should be reasonably selected to make fixed-canard dual-spin projectiles have good aerodynamic characteristics.

Cite this article

XU Nuo , YU Jianqiao , WANG Yafei . Dynamic bifurcation characteristics analysis on fixed-canard dual-spin projectiles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(12) : 3798 -3808 . DOI: 10.7527/S1000-6893.2015.0096

References

[1] Zhang M Q, Liu D F, Wang D M, et al. A summary for trajectory correction projectiles[J]. Acta Armamentarii, 2010, 32(2):127-130(in Chinese).张民权,刘东方,王冬梅,等.弹道修正弹发展综述[J].兵工学报, 2010, 32(2):127-130.
[2] Gagnon E, Lauzon M. Course correction fuze concept analysis for in-service 155 mm spin-stabilized gunnery projectiles[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reston:AIAA, 2008:1-20.
[3] Wang Z G, Li W, Zhang Z N. Dynamics modeling of guided dual-spin rocket[J]. Acta Armamentarii, 2013, 34(7):910-915(in Chinese).王志刚,李伟,张振宁.双旋制导火箭弹动力学建模[J].兵工学报, 2013, 34(7):910-915.
[4] Reg F J, Smith J. Aeroballistics of a terminally corrected spinning projectile (TCSP)[J]. Journal of Spacecraft and Rockets, 1975, 12(12):733-738.
[5] Costello M, Peterson A. Linear theory of a dual-spin projectile in atmospheric flight[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(5):789-797.
[6] Wernert P. Stability analysis for canard guided dual-spin stabilized projetiles[C]//Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston:AIAA, 2009:1-24.
[7] Cloutier G J. Stable rotation states of dual-spin spacecraft[J]. Journal of Spacecraft and Rockets, 1968, 5(4):490-492.
[8] Likins P W. Attitude stability criteria for dual spin spacecraft[J]. Journal of Spacecraft and Rockets, 1967, 4(12):1638-1643.
[9] Theodoulis S, Gassmann V, Wernert P, et al. Guidance and control design for a class of spin-stabilized fin-controlled projectiles[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2):517-531.
[10] Wernert P, Theodoulis S. Modelling and stability analysis of the 155 mm spin-stabilised projectile equipped with course correction fuse(CCF)[J]. International Journal of Modelling, Identification and Control, 2011, 14(3):189-204.
[11] Theodoulis S, Wernert P. Flight control for a class of 155 mm spin-stabilized projectiles with course correction fuse (CCF)[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reston:AIAA, 2011:1-10.
[12] Ji X L, Wang H P, Zeng S M, et al. CFD prediction of longitudinal aerodynamics for a spinning projectile with fixed canard[J]. Transactions of Beijing Institute of Technology, 2011, 31(3):265-268(in Chinese).纪秀玲,王海鹏,曾时明,等.可旋转鸭舵对旋转弹丸纵向气动特性的影响[J].北京理工大学学报, 2011, 31(3):265-268.
[13] Hao Y P, Meng Q Y, Zhang J Y. Aerodynamic characteristic analysis on two-dimensional trajectory corrector shell with fixed-wing[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(3):171-173(in Chinese).郝永平,孟庆宇,张嘉易.固定翼二维弹道修正弹气动特性分析[J].弹箭与制导学报, 2012, 32(3):171-173.
[14] Liu Y Z, Chen L Q. Nonlinear vibration[M]. Beijing:Higher Education Press, 2001:1-16(in Chinese).刘延柱,陈立群.非线性振动[M].北京:高等教育出版社, 2001:1-16.
[15] Xu D S, Lu Q S. Bifurcation analysis of inertia cross coupling in aircraft rolling[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(2):144-147(in Chinese).许多生,陆启韶.飞机滚转时惯性耦合运动的分岔分析[J].航空学报, 2001, 22(2):144-147.
[16] Zhang J Z, Li K L, Chen L Y. Nonlinear dynamics of static stall of airfoil and its control[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(12):2163-2173(in Chinese).张家忠,李凯伦,陈丽莺.翼型失速的非线性动力学特性及其控制[J].航空学报, 2011, 32(12):2163-2173.
[17] Li K, Fang Z P. Application of bifurcation analysis to control law design at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(4):289-292(in Chinese).黎康,方振平.分叉分析方法在大迎角控制律设计中的应用[J].航空学报, 2003, 24(4):289-292.
[18] Han Z P. Limit cycles of fin stabilized projectile nonlinear planar motion[J]. Acta Armamentarii, 1985, 1:10-11(in Chinese).韩子鹏.尾翼弹平面非线性运动的极限环[J].兵工学报, 1985, 1:10-11.
[19] Wang Q, Mao Z J, He K F, et al. Bifurcation analysis of nonlinear stability of the attitude control of missiles[J]. Journal of Ballistics, 2005, 17(2):49-54(in Chinese).汪清,毛仲君,何开锋,等.姿控导弹非线性稳定性的分叉分析[J].弹道学报, 2005, 17(2):49-54.
[20] Han Z P. Rocket exterior ballistics[M]. Beijing:Beijing Institute of Technology Press, 2008:145-149(in Chinese).韩子鹏.弹箭外弹道学[M].北京:北京理工大学出版社, 2008:145-149.
[21] Tang Y. Symmetric bifurcation theory foundation[M]. Beijing:Science Press, 1998:12-35(in Chinese).唐云.对称性分岔理论基础[M].北京:科学出版社, 1998:12-35.

Outlines

/