Fluid Mechanics and Flight Mechanics

Numerical simulation of injection schemes with separate supply of fuel and oxidizer effects on rotating detonation engine

  • XU Xueyang ,
  • ZHUO Changfei ,
  • WU Xiaosong ,
  • LI Jie ,
  • MA Hu
Expand
  • 1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
    2. Yuxi Industrial Group Co. Ltd., Nanyang 473000, China

Received date: 2015-04-27

  Revised date: 2015-06-30

  Online published: 2015-07-10

Supported by

National Natural Science Foundation of China (51376091);National Natural Science Youth Foundation of China (11402119)

Abstract

In order to study the operation process of rotating detonation engine (RDE) with separate supply of fuel (H2) and oxidizer (Air) in the real situation, a reduced kinetic mechanism based on 7-step reaction and 8 specie is used to simulate three-dimensional RDE, and the transport processes such as thermal conduction,diffusion and viscosity are ignored. The flow field structure of RDE and the influence of fuel injection strategies on RDE characteristics are discussed in detail. Results show that:the numerical method used in this article can simulate the flow field structure of the RDE effectively; In a given calculation condition, different injection schemes are comparatively studied. The average propagation velocity of rotating detonation wave changes from 1 640 m/s to 1 840 m/s and the average thrust of the rotating detonation engine changes from 90 N to 100 N. The specific impulse based on mixtures changes from 820 m/s to 900 m/s. As the injection position moved forward, the RDE characteristics are obviously improved. But the change of the injection angle has a little influence. As the injection angle decreases, the RDE performance is gradually improved. The RDE performance with the double side injection method was much better than that with the unilateral injection. The RDE performance is proportional to the mixing effect. The study provides some references for the further research of RDE.

Cite this article

XU Xueyang , ZHUO Changfei , WU Xiaosong , LI Jie , MA Hu . Numerical simulation of injection schemes with separate supply of fuel and oxidizer effects on rotating detonation engine[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(4) : 1184 -1195 . DOI: 10.7527/S1000-6893.2015.0195

References

[1] VOITSEKHOVSKⅡ B V. Maintained detonations[J]. Doklady Akademii Nauk UzSSR, 1959, 129(6):1254-1256.
[2] VOITSEKHOVSKⅡ B V. Spinning maintained detonations[J]. Prikladnaya Mekhanikai Tekhnicheskaya Fizikal, 1960(3):157-164.
[3] NICHOLLS J A, CULLEN R E, RAGLAND K W. Feasibility studies of a rotating detonation wave rocket motor[J]. Journal of Spacecraft and Rocket, 1966, 3(6):893-898.
[4] ADAMSON T C, OLSSON G R. Performance analysis of a rotating detonation wave engine[J]. Astronautica Acta, 1967, 13(3):405-415
[5] BYKOVSKⅡ F A, VEDERNIKOV E F. Continuous spin detonation in annular combustors[J]. Combustion, Explosion, and Shock Waves, 2005, 41(4):449-459.
[6] BYKOVSKⅡ F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonation[J]. Journal of Propulsion and Power, 2006, 22(6):1204-1216.
[7] FALERNPIN F, NAOUR B L. MBDA R&T effect on pulsed and continuous detonation wave engines[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2011, 28(1):12-22.
[8] THOMAS L M, SCHAUER F R, HOKE J L, et al. Build up and operation of a rotating detonation engine:AIAA-2011-0602[R]. Reston:AIAA, 2011.
[9] RUSSO R M, KING P I, SCHAUER F R, et al. Characterization of pressure rise across a continuous detonation engine:AIAA-2011-6046[R]. Reston:AIAA, 2011.
[10] SHANK J C, KING P I. Development and testing of a modular rotating detonation engine:AIAA-2012-0120[R]. Reston:AIAA, 2012.
[11] THEUERKAUF S W, KING P I. Thermal management for a modular rotating detonation engine:AIAA-2013-1176[R]. Reston:AIAA, 2013.
[12] 刘世杰, 林志勇, 林伟, 等. H2/Air连续旋转爆震波的起爆及传播过程实验[J]. 推进技术, 2012, 33(3):483-489. LIU S J, LIN Z Y, LIN W, et al. Experiment on the ignition and propagation processes of H2/Air Continuous rotating detonation wave[J]. Journal of Propulsion Technology, 2012, 33(3):483-489(in Chinese).
[13] 郑权, 翁春生, 白桥栋. 倾斜环缝喷孔式连续旋转爆轰发动机试验[J]. 推进技术, 2014, 35(4):570-577. ZHENG Q, WENG C S, BAI Q D, Experiment on continuous rotating detonation engine with tilt slot injector[J]. Journal of Propulsion Technology, 2014, 35(4):570-577(in Chinese).
[14] KINDRACKI J, WOLANSKI Z P, GUT Z. Experimental research on the rotating detonation in gaseous fuels-oxygen mitures[J]. Shock Waves, 2011, 21(2):75-84.
[15] YI T H, TURANGAN C. Effect of nozzle shapes on the performance of continuously rotating detonation engine:AIAA-2009-0152[R]. Reston:AIAA, 2009.
[16] JIANG X H, FAN B C, GUI Y M, et al. Numerical investigations on the three-dimensional flow patterns of the continuous rotation detonation[C]//Minsk:22nd International Colloquium on Dynamics of Explosions and Reactive Systems, 2009.
[17] 刘世杰, 覃慧, 林志勇, 等. 连续旋转爆震波细致结构及自持机理推进技术[J]. 推进技术, 2011, 32(3):431-436. LIU S J, QIN H, LIN Z Y, et al. Detailed structure and propagating mechanism research on continuous rotating detonation wave[J]. Journal of Propulsion Technology, 2011, 32(3):431-436(in Chinese).
[18] 邵业涛, 王健平, 唐新猛, 等. 连续旋转爆震发动机流场三维数值模拟[J]. 航空动力学报, 2010, 25(8):1717-1722. SHAO Y T, WANG J P, TANG X M, et al. Three-dimensional numerical simulation of continuous rotating detonation engine flowfields[J]. Journal of Aerospace Power, 2010, 25(8):1717-1722(in Chinese).
[19] 邵业涛, 刘勐, 王健平. 圆柱坐标系下连续旋转爆震发动机的数值模拟[J]. 推进技术, 2009, 30(6):717-721. SHAO Y T, LIU M, WANG J P. Numerical simulation of continuous rotating detonation engine in column coordinate[J]. Journal of Propulsion Technology, 2009, 30(6):717-721(in Chinese).
[20] 归明月, 范宝春, 张旭东, 等. 旋转爆震的三维数值模拟[J]. 推进技术, 2010, 31(1):82-86. GUI M Y, FAN B C, ZHANG X D, et al. Three-dimensional simulation of continuous spin detonation[J]. Journal of Propulsion Technology, 2010, 31(1):82-86(in Chinese).
[21] 姜孝海, 范宝春, 董刚, 等. 旋转爆震流场的数值模拟[J]. 推进技术, 2007, 28(4):403-407. JIANG X H, FAN B C, DONG G, et al. Numerical investigation on the flow field of rotating detonation wave[J]. Journal of Propulsion Technology, 2007, 28(4):403-407(in Chinese).
[22] FROLOV S M, DUBROVSKⅡ A V, IVANOV V S. Three-dimensional numerical simulation of the operation of a rotation-detonation chamber with separate supply of fuel and oxidizer[J]. Russian Journal of Physical Chemistry B, 2013, 7(1):35-43.
[23] 卓长飞, 武晓松, 封峰. 底部排气弹三维湍流燃烧的数值模拟[J]. 固体火箭技术, 2013, 36(6):720-726. ZHUO C F, WU X S, FENG F. Numerical simulation of three-dimensional turbulent combustion of the base bleed projectile[J]. Journal of Solid Rocket Technology, 2013, 36(6):720-726(in Chinese).
[24] 卓长飞, 武晓松, 封峰. 超声速流动中底部排气减阻的数值研究[J]. 兵工学报, 2014, 35(1):18-25. ZHUO C F, WU X S, FENG F. Numeiical research on drag reduction of base bleed in supersonic flow[J]. Acta Armamentarii, 2014, 35(1):18-25(in Chinese).
[25] 徐雪阳, 武晓松, 卓长飞, 等. 旋转爆轰发动机燃烧室掺混特性数值研究[J]. 弹道学报, 2015, 27(3):66-75. XU X Y, WU X S, ZHUO C F, et al. Numerical simulation of mixing characteristics in rotating detonation engine combustor[J]. Journal of Balistics, 2015, 27(3):66-75(in Chinese).
[26] MOUZA A A, PATSAC M, SEHONFELD F. Mixing performance of a chaotic micro-mixer[J]. Chemical Engineering Research and Design, 2008, 86(10):1128-1134.

Outlines

/