ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Numerical and experimental research on performance of swirl brakes for the static and dynamic characteristics of seals
Received date: 2014-09-15
Revised date: 2015-06-15
Online published: 2015-06-30
Supported by
National Natural Science Foundation of China (11302133); Aeronautical Science Foundation of China (20140454); Education Fund Item of Liaoning Province (L2013071)
The seal dynamic characteristics play an important role in rotating machinery rotor system stability. The use of swirl brakes at the inlet of seals is an effective method to improve the seal stability. The paper designs five kinds of seals without and with swirl brakes. Numerical and experimental research on the performances of swirl brakes for the static and dynamic characteristics of seals are investigated. The paper sets up the swirl brake seal static characteristics CFD numerical model to analyze the performance of swirl brakes on seal leakage, the tangential velocity and pressure distribution. Experiments are presented to identify the dynamic characteristics coefficients using an improved impedance method based on unbalanced synchronous excitation method. The results show that compared to the traditional seals, the seals with brake seals have less leakage, lower fluid tangential velocity and smaller circumferential pressure difference. With the increase of swirl brake quantity in the circumferential direction and swirl brake radial length, this effect increases gradually. It is the main reason why swirl brakes reduce flow-induced force. Preswirl is a main factor for seal cross stiffness coefficients. The seal cross stiffness coefficients increase with inlet/outlet pressure ratio and rotational speed. The swirl brakes can effectively reduce the cross-couple stiffness and increase the direct damping for a variable conditions. It is believed that the results of this study will assist in improving the design of annular seal.
Key words: swirl brakes; seals; vibration; static characteristics; dynamic characteristics
SUN Dan , WANG Shuang , AI Yanting , WANG Keming , XIAO Zhonghui , LI Yun . Numerical and experimental research on performance of swirl brakes for the static and dynamic characteristics of seals[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(9) : 3002 -3011 . DOI: 10.7527/S1000-6893.2015.0184
[1] He L D, Xia S B. Review on aerodynamic excitation and its elimination method in the rotor-seal system[J]. Journal of Vibration Engineering, 1999, 12(1):64-72 (in Chinese). 何立东, 夏松波. 转子密封系统流体激振及其减振技术研究简评[J]. 振动工程学报,1999, 12(1): 64-72.
[2] Cao S Q, Chen Y S. A review of modern rotor/seal dynamics[J]. Engineering Mechanics, 2009, 26(Sup. Ⅱ): 68-79 (in Chinese). 曹树谦, 陈予恕. 现代密封转子动力学研究综述[J]. 工程力学, 2009, 26(增刊Ⅱ): 68-79.
[3] Zhang W F, Yang J G, Cao H, et al. Theoretical and experimental research of tangential fluid-induced force and its influence on stability in eccentric seal[J]. Journal of Mechanical Engineering, 2011, 47(17): 92-98 (in Chinese). 张万福, 杨建刚, 曹浩, 等. 偏心密封内切向气流力及其对稳定性影响的理论与试验研究[J]. 机械工程学报, 2011, 47(17): 92-98.
[4] Li S T, Xu Q Y. Nonlinear dynamic stability of labyrinth seal-sliding bearing-rotor system[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(3): 226-229 (in Chinese). 李松涛, 许庆余. 迷宫密封-滑动轴承-转子系统的非线性动力稳定性[J]. 航空学报, 2003, 24(3): 226-229.
[5] Sun D, Yang J G, Guo R, et al. A trigonometric series expansion based method for the research of static and dynamic characteristics of eccentric seals[J]. Journal of Mechanical Science and Technology, 2014, 28(6): 2111-2120.
[6] Li Z G, Li J, Feng Z P. Leakage flow of pocket damper seal at high rotational speed[J]. Journal of Aerospace Power, 2012, 27(12): 2828-2835 (in Chinese). 李志刚, 李军, 丰镇平. 高转速袋型阻尼密封泄漏的特性[J]. 航空动力学报, 2012, 27(12): 2828-2835.
[7] He L D, Gao J J. Study on gas flow-induced vibration for a three-dimensional rotor-seal system[J]. Chinese Journal of Mechanical Engineering, 2003, 39(3): 100-104 (in Chinese). 何立东, 高金吉. 三维转子密封系统气流激振的研究[J]. 机械工程学报, 2003, 39(3): 100-104.
[8] Kirk G, Gao R. Influence of preswirl on rotordynamic characteristics of labyrinth seals[J]. Tribology Transactions, 2012, 55(3): 357-364.
[9] Muszynska A, Bently D E. Anti-swirl arrangements prevent rotor/seal instability[J]. Journal of Vibration and Acoustics, 1989, 111(2): 156-162.
[10] Memmott E A. Stability analysis and testing of a train of centrifugal compressors for high pressure gas injection[J]. Journal of Engineering for Gas Turbines and Power, 1999, 121(3): 509-514.
[11] Soto E A, Childs D W. Experimental rotordynamic coefficient results for (a) a labyrinth seal with and without shunt injection and (b) a honeycomb seal[J]. Journal of Engineering for Gas Turbines and Power, 1999, 121(1): 153-159.
[12] Brown P D, Childs D W. Measurement versus predictions of rotordynamic coefficients of a hole-pattern gas seal with negative preswirl[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(12): 122503.
[13] Kim N, Park S Y, Rhode D. Predicted effects of shunt injection on the rotordynamics of gas labyrinth seals[J]. Journal of Engineering for Gas Turbines and Power, 2003, 125(1): 167-174.
[14] Shen Q G, Li L R, Pan Y M. Flow-induced force and anti-preswirl mechanism for labyrinth seals[J]. Fluid Machinery, 1994, 22(7): 7-11 (in Chinese). 沈庆根, 李烈荣, 潘永密. 迷宫密封中的气流激振及其反旋流措施[J]. 流体机械, 1994, 22(7): 7-11.
[15] He L D. Numerical simulation of anti-swirl arrangements for suppressing rotor/seal instability[J]. Journal of Aerospace Power, 1999, 14(3): 293-333 (in Chinese). 何立东. 转子密封系统反旋流抑振的数值模拟[J]. 航空动力学报, 1999, 14(3): 293-333.
[16] Kimura T, Kawasaki S, Shimagaki M, et al. Effects of swirl brakes on the leakage flow between the casing and the shroud of a centrifugal impeller[C]//Proceedings of the ASME-JSME-KSME 2011 Joint Fluids Engineering Conference, 2011.
[17] da Soghe R, Micio M, Andreini A, et al. Numerical characterization of swirl brakes for high pressure centrifugal compressors[C]//Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, 2013.
[18] Nielsen K K, Childs D W, Myllerup C W. Experimental and theoretical comparison of two swirl brake designs[J]. Journal of Turbomachinery, 2001, 123(2): 353-358.
[19] Kwanka K. Improving the stability of labyrinth gas seals[J]. Journal of Engineering for Gas Turbines and Power, 2001, 123(2): 383-386.
[20] Childs D Q, Mclean J E, Jr, Zhang M, et al. Rotordynamic performance of a negative-swirl brake for a tooth-on-stator labyrinth seal[C]//Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, 2014.
[21] Cao H, Yang J G, Zhang W F, et al. Experimental identification method using unbalance synchronous frequency excitation for seals rotordynamic coefficients analysis[J]. Proceeding of the CSEE, 2011, 31(35): 117-122 (in Chinese). 曹浩, 杨建刚, 张万福, 等. 基于不平衡同频激励的密封动力特性系数识别[J]. 中国电机工程学报, 2011, 31(35): 117-122.
/
〈 | 〉 |