Electronics and Control

Attitude control of fly wing UAV with multi-boundary state constraints

  • ZHANG Bo ,
  • ZHOU Zhou ,
  • ZHU Xiaoping
Expand
  • 1. Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi'an 710065, China;
    2. College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    3. UAV Research Institute, Northwestern Polytechnical University, Xi'an 710065, China

Received date: 2015-03-18

  Revised date: 2015-06-15

  Online published: 2015-06-18

Supported by

National Defence Pre-research Foundation (513250201)

Abstract

To solve the flight attitude control problem under multi-boundary state constraints and strong disturbance, a joint command-control law limiting full state constraint control approach is proposed, with a high-aspect-ratio flying wing UAV as the research model. This control approach consists of three independent parts: command limiter, reference generator and command tracker. Firstly, based on the aircraft dynamic characteristics, the command limiter utilizes each state bound to restrict attitude command. In this way, the constraint problem of non-controlled states is converted into a constraint problem of controlled states. Secondly, the reference generator provided a command trajectory from the current attitude to the desired attitude. This online process is achieved according to the idea of "transition process arranging" and considering the constraints. Finally, the command tracker is designed based on barrier Lyapunov function and extended state observer, which enable the UAV overcoming disturbance and tracking command trajectory quickly and stably. The stability is analyzed by means of Lyapunov theory. Attitude tracking error is proved to be bounded-convergent and always remain in the given region. Simulation results show that UAV tracks the desired attitude command accurately. Moreover, the established controller can prevent flight states from exceeding limitation.

Cite this article

ZHANG Bo , ZHOU Zhou , ZHU Xiaoping . Attitude control of fly wing UAV with multi-boundary state constraints[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(9) : 3105 -3115 . DOI: 10.7527/S1000-6893.2015.0183

References

[1] Zhang X P, Chen Z J. A design method on limiter for angle of attack and normal acceleration[J]. Acta Aeronautica et Astronautica Sinica, 1995, 16(1): 87-91 (in Chinese). 张喜平, 陈宗基. 迎角过载边界限制器的设计方法[J]. 航空学报, 1995, 16(1): 87-91.
[2] Falkena W, Borst C, Chu Q P, et al. Investigation of practical flight envelope protection systems for small aircraft[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(4): 977-988.
[3] Yavrucuk I, Prasad J V R, Unnikrishnan S. Envelope protection for autonomous unmanned aerial vehicles[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1): 248-261.
[4] Yavrucuk I, Prasad J V R. Online dynamic trim and control limit estimation[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(5): 1647-1656.
[5] Wang S, Zhan H. The safe-set of aircraft and maneuverability envelope protection[J]. Journal of Northwestern Polytechnical University, 2014, 32(4): 523-528 (in Chinese). 王爽, 詹浩. 飞行最大可控边界集及其机动边界保护控制[J]. 西北工业大学学报, 2014, 32(4): 523-528.
[6] Sahani N A, Horn J F. Command limiting for full-envelope guidance and control of rotorcraft, AIAA-2005-6348[R]. Reston: AIAA, 2005.
[7] Kong L L. The envelope protection resisting strong disturbance based on fly wing platform[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009 (in Chinese). 孔琳玲. 飞翼飞行平台强扰动下的飞行边界控制技术[D].南京: 南京航空航天大学, 2009.
[8] Blanchini F. Set invariance in control[J]. Automatica, 1999, 35(11): 1747-1767.
[9] Mayne D Q, Rawlings J B, Rao C V, et al. Constrained model predictive control: Stability and optimality[J]. Automatica, 2000, 36(6): 789-814.
[10] Kogiso K, Hirata K. Reference governor for constrained systems with time-varying references[J]. Robotics and Autonomous Systems, 2009, 57(3): 289-295.
[11] Ye H, Chen M, Wu Q X. Envelope protection control for maneuver flight based on multi-regulator sliding mode control switch approach[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12): 3358-3370 (in Chinese). 叶辉, 陈谋, 吴庆宪. 基于多滑模调节器切换的机动飞行边界保护控制[J]. 航空学报, 2014, 35(12): 3358-3370.
[12] Ngo K B, Mahony R, Jiang Z. Integrator backstepping design for motion systems with velocity constraint[C]//Proceedings of the 5th Asian Control Conference. Piscataway, NJ: IEEE Press, 2004: 141-146.
[13] Ngo K B, Mahony R, Jiang Z. Integrator backstepping using barrier functions for systems with multiple state constraints[C]//Proceedings of the 44th IEEE Conference on Decision and Control. Piscataway, NJ: IEEE Press, 2005: 8306-8312.
[14] Tee K P, Gea S S, Tay E H. Barrier Lyapunov functions for the control of output-constrained nonlinear systems[J].Automatica, 2009, 45(4): 918-927.
[15] Ren B, Ge S S, Tee K P, et al. Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function[J]. IEEE Transactions on Neural Networks, 2010, 21(8): 1335-1339.
[16] Tee K P, Ge S S, Li H, et al. Control of nonlinear systems with time-varying output constraints[C]//Proceedings of IEEE International Conference on Control and Automation. Piscataway, NJ: IEEE Press, 2009: 524-529.
[17] Tee K P, Ren B B,Ge S S. Control of nonlinear systems with time-varying output constraints[J]. Automatica, 2011,47(11): 2511-2516.
[18] Tee K P, Ge S S. Control of nonlinear systems with full state constraint using a barrier Lyapunov function[C]//Proceedings of the 48th IEEE Conference on Decision and Control. Piscataway, NJ: IEEE Press, 2009: 8618-8623.
[19] Tee K P, Ge S S. Control of nonlinear systems with partial state constraints using a barrier Lyapunov function[J].International Journal of Control, 2011, 84(12): 2008-2023.
[20] Waszak M R, Schmidtf D K. Flight dynamics of aeroelastic vehicles[J]. Journal of Aircraft, 1988, 25(6): 563-571.
[21] Stengel R F. Flight dynamics[M]. Princeton: Princeton University Press, 2004: 49-51.
[22] Huang H P, Wan H, Han J Q. Arranging the transient process is an effective method improved the "robustness, adaptability and stability" of closed-loop system[J]. Control Theory and Applications, 2001, 18(Suppl.): 89-94 (in Chinese). 黄焕袍, 万晖, 韩京清. 安排过渡过程是提高闭环系统"鲁棒性、适应性和稳定性"的一种有效方法[J]. 控制理论与应用, 2001, 18(Suppl.): 89-94.
[23] Han J Q. Active disturbance rejection control technique[M]. Beijing: National Defense Industry Press, 2008: 255-263 (in Chinese). 韩京清. 自抗扰控制技术[M]. 北京: 国防工业出版社, 2008: 255-263.
[24] Huang Y, Han J Q. Analysis and design of nonlinear continuous second order extended state observer[J]. Chinese Science Bulletin, 2000, 45(13): 1373-1379 (in Chinese). 黄一, 韩京清. 非线性连续二阶扩张状态观测器的分析与设计[J]. 科学通报, 2000, 45(13): 1373-1379.
[25] Zhu Z, Xu D, Liu J, et al. Missile guidance law based on extended state observer[J]. IEEE Transactions on Industrial Electronics, 2013, 60(12): 5882-5891.
[26] Xiao Y L, Jin C J. Flight principles in atmospheric disturbance[M]. Beijing: National Defense Industry Press, 1993: 77-84 (in Chinese). 肖亚伦, 金长江. 大气扰动中的飞行原理[M]. 北京: 国防工业出版社, 1993: 77-84.

Outlines

/