ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Several hot issues and challenges in terminal guidance of flight vehicles
Received date: 2015-05-04
Revised date: 2015-06-07
Online published: 2015-06-12
Supported by
National Natural Science Foundation of China (61333001, 61473099)
With the development of the science and technology for national security and defense, new combat scenarios, new application requirements and especially new techniques come up which bring problems and challenges for terminal guidance and control of flight vehicles. The current requirements and new threats are analyzed in this paper. Several hot issues are discussed, including guidance and control under multi-source information, cooperative guidance and control of multiple flight vehicles, guidance and control under special limits, as well as integrated design and evaluation of guidance and control system. Additionally, the key problems, potential future directions and prospects are summarized.
YAO Yu , ZHENG Tianyu , HE Fenghua , WANG Long , WANG Yang , ZHANG Xi , ZHU Baiyang , YANG Baoqing . Several hot issues and challenges in terminal guidance of flight vehicles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(8) : 2696 -2716 . DOI: 10.7527/S1000-6893.2015.0176
[1] Huang L, Duan Z S, Yang J Y. Challenges of control science in near space hypersonic aircrafts[J]. Control Theory & Applications, 2011, 28(10): 1496-1505 (in Chinese). 黄琳, 段志生, 杨剑影. 近空间高超声速飞行器对控制科学的挑战[J]. 控制理论与应用, 2011, 28(10): 1496-1505.
[2] Ohlmeyer E J, Menon P K, Kim J. Tracking of spiraling reentry vehicles with varying frequency using the unscented Kalman filter[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2010: 2-5.
[3] Gao Y H, Wang P, Li J L, et al. Optical imaging guidance technology in complicated battlefield environment[J]. Modern Defence Technology, 2012, 40(1): 6-10 (in Chinese). 高颖慧, 王平, 李君龙, 等. 复杂战场环境下的防空反导光学成像制导技术[J]. 现代防御技术, 2012, 40(1): 6-10.
[4] Anderson J C, Downs G S, Trepagnier P C. Signal processor for space-based visible sensing[C]//SPIE Proceedings. Bellingham, WA: SPIE, 1991: 78-92.
[5] Schweitzer C, Stein K, Wendelstein N. Evaluation of appropriate sensor specifications for space based ballistic missile detection[C]//SPIE Proceedings. Bellingham, WA: SPIE, 2012: 85410M-1-11.
[6] Zhang Y G, Yang J, Zhou J, et al. Preliminary research of active radar/IR imaging compound seeker[J]. Infrared and Laser Engineering, 2007, 36(9): 43-46 (in Chinese). 张义广, 杨军, 周军, 等. 主动雷达/红外成像复合导引头技术浅谈[J]. 红外与激光工程, 2007, 36(9): 43-46.
[7] Yang B, Zheng T, Zhang S, et al. Analysis and modeling of terminal guidance system for a flight vehicle with side-window detection[C]//Proceedings of 2014 33rd Chinese Control Conference (CCC). Piscataway, NJ: IEEE Press, 2014: 1051-1056.
[8] Aidala V J. Kalman filter behavior in bearings-only tracking applications[J]. IEEE Transactions on Aerospace and Electronic Systems, 1979, AES-15 (1): 29-39.
[9] Ristic B, Arulampalam M S. Tracking a manoeuvring target using angle-only measurements: algorithms and performance[J]. Signal Processing, 2003, 83(6): 1223-1238.
[10] Li X R, Jilkov V P. Survey of maneuvering target tracking. Part Ⅰ. Dynamic models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1333-1364.
[11] Zhang H J, Liu F, Qiu X Y. A method of space registration for cooperative and noncooperative target based on UKF[J]. Digital Technology and Application, 2011(3): 80-82 (in Chinese). 张海军, 刘方, 邱晓野. 一种利用UKF进行协作式和非协作式目标空间配准的方法[J]. 数字技术与应用, 2011 (3): 80-82.
[12] Daeipour E, Bar-Shalom Y. An interacting multiple model approach for target tracking with glint noise[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(2): 706-715.
[13] Qiao K, Wang Z Y, Cong M Y. Analysis on space based and ground based surveillance system to space target[J]. Optical Technique, 2006, 32(5): 744-746 (in Chinese). 乔凯, 王治乐, 丛明煜. 空间目标天基与地基监视系统对比分析[J]. 光学技术, 2006, 32(5): 744-746.
[14] Kirubarajan T, Bar-Shalom Y, Lerro D. Bearings-only tracking of maneuvering targets using a batch-recursive estimator[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3): 770-780.
[15] Maybeck P S, Rogers S K. Adaptive tracking of multiple hot-spot target IR images[J]. IEEE Transactions on Automatic Control, 1983, 28(10): 937-943.
[16] Blair W D, Rice T R, Alouani A T, et al. Asynchronous data fusion for target tracking with a multitasking radar and optical sensor[C]//SPIE Proceedings. Bellingham, WA: SPIE, 1991: 234-245.
[17] Bar-Shalom Y. Multitarget-multisensor tracking: advanced applications[M]. Norwood, MA: Artech House, 1990: 391.
[18] Burke J J. The sage real quality control fraction and its interface with buic ii, Technical Report 308[R]. Bedford, MA: The MITRE Corporation, 1996.
[19] Leung H, Blanchette M, Harrison C. A least squares fusion of multiple radar data[C]//Proceedings of Radar. Paris, 1994: 364-369.
[20] Leung H, Blanchette M, Gault K. Comparison of registration error correction techniques for air surveillance radar network[C]//Proceedings of SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation. Bellingham, WA: SPIE, 1995: 498-508.
[21] Simard M A, Begin F. Central level fusion of radar and IRST contacts and the choice of coordinate system[C]//Proceedings of Optical Engineering and Photonics in Aerospace Sensing. Bellingham, WA: SPIE, 1993: 462-472.
[22] Li L G, Jing W X, Gao C S. Tracking near space vehicle using early-warning satellite[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 105-115 (in Chinese). 李罗钢, 荆武兴, 高长生. 基于预警卫星系统的临近空间飞行器跟踪[J]. 航空学报, 2014, 35(1): 105-115.
[23] van der Merwe R. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models[D]. Beaverton, Oregon: Oregon Health & Science University, 2004.
[24] Zhang S J, Cao X B. The estimation algorithm of ballistic missile state based on early warning satellite[J]. Journal of Astronautics, 2005, 26(S1): 16-22 (in Chinese). 张世杰, 曹喜滨. 基于预警卫星观测的弹道导弹运动状态估计算法[J]. 宇航学报, 2005, 26(S1): 16-22.
[25] Colegrove S B, Davey S J. PDAF with multiple clutter regions and target models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(1): 110-124.
[26] Puranik S, Tugnait J K. Tracking of multiple maneuvering targets using multiscan JPDA and IMM filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 23-35.
[27] Bar-Shalom Y, Blackman S S, Fitzgerald R J. Dimensionless score function for multiple hypothesis tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 392-400.
[28] Kirubarajan T, Bar-Shalom Y. Probabilistic data association techniques for target tracking in clutter[J]. Proceedings of the IEEE, 2004, 92(3): 536-557.
[29] Ahn B W, Choi J W, Song T L. An adaptive interacting multiple model with probabilistic data association filter using variable dimension model[C]//Proceedings of the 41st SICE Annual Conference. Piscataway, NJ: IEEE Press, 2002: 713-718.
[30] Wang R, Zong H, Zong C G. A fast algorithm for multiple targets data association in HF bistatic radar system based on MNJPDA[C]//Proceedings of 2009 IHMSC'09 International Intelligent Human-Machine Systems and Cybernetics. Piscataway, NJ: IEEE Press, 2009: 99-102.
[31] Yin X, Sun Y, Song S, et al. A target tracking algorithm based on optical transfer function and normalized cross correlation[C]//The Proceedings of the Second International Conference on Communications, Signal Processing, and Systems. Berlin: Springer International Publishing, 2014: 1021-1027.
[32] Olfati-Saber R. Distributed Kalman filtering for sensor networks[C]//Proceedings of 2007 46th IEEE Conference on Decision and Control. Piscataway, NJ: IEEE Press, 2007: 5492-5498.
[33] Yang B Q, He F H, Yao Y. Passive tracking a maneuvering target with intermittent accessorial measurement[J]. Infrared and Laser Engineering, 2009, 38(3): 530-535 (in Chinese). 杨宝庆, 贺风华, 姚郁. 带有间歇辅助测量的机动目标被动跟踪[J]. 红外与激光工程, 2009, 38(3): 530-535.
[34] Cui Z S, Zeng T, Long T. Novel estimated algorithm for information fusion on MMW/IR dual-mode combined seeker[C]//Proceedings of Multispectral Image Processing and Pattern Recognition. Bellingham, WA: SPIE, 2001: 60-64.
[35] Chen T, Xu S. Double line-of-sight measuring relative navigation for spacecraft autonomous rendezvous[J]. Acta Astronautica, 2010, 67(1): 122-134.
[36] Mobus R, Kolbe U. Multi-target multi-object tracking, sensor fusion of radar and infrared[C]//Proceedings of 2004 IEEE Intelligent Vehicles Symposium. Piscataway, NJ: IEEE Press, 2004: 732-737.
[37] Han F, Yang W H. Radar and infra-red data fusion algorithm based on fuzzy-neural network[C]//Proceedings of the 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment. Bellingham, WA: SPIE, 2007: 67233S-1-5.
[38] Dong C, Shi X, Xia L. A fuzzy adaptive fusion algorithm for radar/infrared dual mode guidance[C]//Proceedings of the Sixth International Symposium on Instrumentation and Control Technology: Sensors, Automatic Measurement, Control, and Computer Simulation. Bellingham, WA: SPIE, 2006: 63583A-1-7.
[39] Kim S H, Park B G, Choi H L, et al. Fixed-point smoothing approach for dual-mode guidance filtering with delayed measurement, AIAA-2014-0606[R]. Reston: AIAA, 2014.
[40] Lai Q F, Liu Y, Zhao J, et al. The anti-jamming approach of the anti-ship terminal radar aided by INS information[J]. Journal of National University of Defense Technology, 2011, 33(4): 86-91 (in Chinese). 来庆福, 刘义, 赵晶, 等. 利用惯导信息的反舰末制导雷达抗干扰方法[J]. 国防科技大学学报, 2011, 33(4): 86-91.
[41] Shaferman V, Oshman Y. Cooperative interception in a multi-missile engagement, AIAA-2009-5783[R]. Reston: AIAA, 2009.
[42] Liu Y F, Qi N M, Shan J J. Cooperative interception with double-line-of-sight-measuring, AIAA-2014-1478[R]. Re-ston: AIAA, 2014.
[43] Vermeulen A, Savelsberg R. Optimal mid-course doctrine for multiple missile deployment, AIAA-2012-4912[R]. Reston: AIAA, 2012.
[44] Ratnoo A, Shima T. Line of sight guidance for defending an aircraft, AIAA-2010-7877[R]. Reston: AIAA, 2010.
[45] Ratnoo A, Shima T. Guidance laws against defended aerial targets, AIAA-2011-6419[R]. Reston: AIAA, 2011.
[46] Tousley B C, Hafer T. Beyond line-of-sight networked fires weapon (NETFIRES)[C]//Proceedings of 2003 AeroSense. Bellingham, WA: SPIE, 2003: 1-6.
[47] Cai H P, Liu J X, Chen Y W, et al. Survey of the research on dynamic weapon-target assignment problem[J]. Journal of Systems Engineering and Electronics, 2006, 17(3): 559-565.
[48] Rosenberger J M, Hwang H S, Pallerla R P, et al. The generalized weapon target assignment problem[C]//Proceedings of 10th International Command and Control Research and Technology Symposium. Bethesda, Maryland: Lockheed Martin Corporation, 2005: 1-12.
[49] Kuhn H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics Quarterly, 1955, 2(1-2): 83-97.
[50] Ahuja R K, Kumar A, Jha K C, et al. Exact and heuristic algorithms for the weapon-target assignment problem[J]. Operations Research, 2007, 55(6): 1136-1146.
[51] Lee Z J, Su S F, Lee C Y. Efficiently solving general weapon-target assignment problem by genetic algorithms with greedy eugenics[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2003, 33(1): 113-121.
[52] Xin B, Chen J, Zhang J, et al. Efficient decision makings for dynamic weapon-target assignment by virtual permutation and tabu search heuristics[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2010, 40(6): 649-662.
[53] Li Y, Dong Y N. Weapon-target assignment based on simulated annealing and discrete particle swarm optimization in cooperative air combat[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 626-631 (in Chinese). 李俨, 董玉娜. 基于SA-DPSO 混合优化算法的协同空战火力分配[J]. 航空学报, 2010, 31(3): 626-631.
[54] Lee Z J, Lee C Y, Su S F. An immunity-based ant colony optimization algorithm for solving weapon-target assignment problem[J]. Applied Soft Computing, 2002, 2(1): 39-47.
[55] Hosein P A, Walton J T, Athans M, et al. Dynamic weapon-target assignment problems with vulnerable C2 nodes, Report LIDS-P-1786[R]. Cambridge, Massachusetts: Laboratory for Information and Decision Systems, 1988.
[56] Hosein P A, Athans M. An asymptotic result for the multi-stage weapon-target allocation problem[C]//Pro-ceedings of the 29th IEEE Conference on Decision and Control. Piscataway, NJ: IEEE Press, 1990: 240-245.
[57] Pryluk R, Shima T, Golan O M. Shoot-shoot-look for an air defense system[J]. IEEE Systems Journal, 2015 (in press).
[58] Cai H P, Liu J X, Chen Y W. On the Markov characteristic of dynamic weapon target assignment problem[J]. Journal of National University of Defense Technology, 2006, 28(3): 124-127 (in Chinese). 蔡怀平, 刘靖旭, 陈英武. 动态武器目标分配问题的马尔可夫性[J]. 国防科技大学学报, 2006, 28(3): 124-127.
[59] Chen Y W, Cai H P, Xing L N. An improved algorithm of policies optimization of dynamic weapon target assignment problem[J]. Systems Engineering-theory & Practice, 2007, 27(7): 160-165 (in Chinese). 陈英武, 蔡怀平, 邢立宁. 动态武器目标分配问题中策略优化的改进算法[J]. 系统工程理论与实践, 2007, 27(7): 160-165.
[60] Khosla D. Hybrid genetic approach for the dynamic weapon-target allocation problem[C]//Proceedings of Aerospace/Defense Sensing, Simulation, and Controls. Bellingham, WA: SPIE, 2001: 244-259.
[61] Besse C, Chaib-draa B. An efficient model for dynamic and constrained resource allocation problems[C]//Proceedings of the 2nd International Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems (COPLAS'07), 2007.
[62] Zhang P. Research on cooperative interception using multiple flight vehicles based on finite-time system theory [D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese). 张鹏. 基于有限时间系统理论的多飞行器协同拦截问题研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
[63] Peng R H, Wang G H, Chen S J, et al. Feasibility research on two missiles' cooperative location[J]. Journal of System Simulation, 2006, 18(5): 1118-1122 (in Chinese). 彭锐晖, 王国宏, 陈士举, 等. 两弹协同定位的可行性研究[J]. 系统仿真学报, 2006, 18(5): 1118-1122.
[64] He F H, Zhang P, Chen Y, et al. Output tracking control of switched hybrid systems: A fliess functional expansion approach[J]. Mathematical Problems in Engineering, 2013, 2013: 412509-1-13.
[65] Wang L, He F H, Wang J W, et al. Guidance law design against a ballistic target with multiple decoys: A finite time approach[C]//Proceedings of 2013 32nd Chinese Control Conference (CCC). Piscataway, NJ: IEEE Press, 2013: 5153-5158.
[66] Dionne D, Michalska H, Rabbath C A. Predictive guidance for pursuit-evasion engagements involving multiple decoys[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1277-1286.
[67] Best R A, Norton J P. Predictive missile guidance[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(3): 539-546.
[68] Wei M, Chen G, Cruz J B, et al. Multi-missile interception integrating new guidance law and game theoretic resource management[C]//Proceedings of 2008 IEEE Aerospace Conference. Piscataway, NJ: IEEE Press, 2008: 1-13.
[69] Le Ménec S, Shin H S, Markham K, et al. Cooperative allocation and guidance for air defence application[J]. Control Engineering Practice, 2014, 32: 236-244.
[70] Piet-Lahanier H, Kahn A, Marzat J. Cooperative guidance laws for maneuvering target interceptions[C]//Proceedings of the 19th IFAC Symposium on Automatic Control in Aerospace (ACA 2013). Sherbrooke, Québec: IFAC, 2013: 301-306.
[71] Zhai C, He F H, Hong Y G. A coverage-based guidance algorithm of multiple interceptors for uncertain targets[C]//Proceedings of 2013 32nd Chinese Control Conference (CCC). Piscataway, NJ: IEEE Press, 2013: 7341-7346.
[72] Wang J W, He F H, Wang L, et al. Cooperative guidance for multiple interceptors based on dynamic target coverage theory[C]//Proceedings of 2014 11th World Congress on Intelligent Control and Automation (WCICA). Piscataway, NJ: IEEE Press, 2014: 4122-4127.
[73] Guo C, Liang X G. Cooperative guidance law for multiple near space interceptors with impact time control[J]. International Journal of Aeronautical and Space Sciences, 2014, 15: 281-292.
[74] Zhou J, Hu Q, Friswell M I. Decentralized finite time attitude synchronization control of satellite formation flying[J]. Journal of Guidance, Control, and Dynamics, 2012, 36(1): 185-195.
[75] Sarlette A, Sepulchre R, Leonard N. Cooperative attitude synchronization in satellite swarms: A consensus approach[C]//Proceedings of the 17th IFAC Symposium on Automatic Control in Aerospace. Sherbrooke, Québec: IFAC, 2007: 1-6.
[76] Shaferman V, Shima T. Cooperative optimal guidance laws for imposing a relative intercept angle, AIAA-2012-4909[R]. Reston: AIAA, 2012.
[77] Liu Y F, Qi N M, Tang Z W. Linear quadratic differential game strategies with two-pursuit versus single-evader[J]. Chinese Journal of Aeronautics, 2012, 25(6): 896-905.
[78] Rusnak I. Games based guidance in anti missile defence for high order participants[C]//Proceedings of MELECON 2010-2010 15th IEEE Mediterranean Electrotechnical Conference. Piscataway, NJ: IEEE Press, 2010: 812-817.
[79] Rusnak I. The Lady, the Bandits, and the Bodyguards——A two team dynamic game[C]//Proceedings of the 16th World IFAC Congress. Sherbrooke, Québec: IFAC, 2005.
[80] Perelman A, Shima T, Rusnak I. Cooperative differential games strategies for active aircraft protection from a homing missile[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(3): 761-773.
[81] Harl N, Balakrishnan S N. Impact time and angle guidance with sliding mode control[J]. IEEE Transactions on Control Systems Technology, 2012, 20(6): 1436-1449.
[82] Ryoo C K, Cho H, Tahk M J. Time-to-go weighted optimal guidance with impact angle constraints[J]. IEEE Transactions on Control Systems Technology, 2006, 14(3): 483-492.
[83] Ryoo C K, Cho H, Tahk M J. Optimal guidance laws with terminal impact angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4): 724-732.
[84] Oza H B, Padhi R. Impact-angle-constrained suboptimal model predictive static programming guidance of air-to-ground missiles[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(1): 153-164.
[85] Qiao Y, Yang B, Cheng D. Attitude control of missile via fliess expansion and model predictive control[C]//Proceedings of 7th World Congress on Intelligent Control and Automation. Piscataway, NJ: IEEE Press, 2008: 1527-1532.
[86] Yao Y, Yang B Q, He F H, et al. Attitude control of missile via fliess expansion[J]. IEEE Transactions on Control Systems Technology, 2008, 16(5): 959-970.
[87] Kumar S R, Rao S, Ghose D. Sliding-mode guidance and control for all-aspect interceptors with terminal angle constraints[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(4): 1230-1246.
[88] Kumar S R, Rao S, Ghose D. Non-singular terminal sliding mode guidance and control with terminal angle constraints for non-maneuvering targets[C]//Proceedings of 2012 12th International Workshop on Variable Structure Systems (VSS). Piscataway, NJ: IEEE Press, 2012: 291-296.
[89] Ebrahimi B, Bahrami M, Roshanian J. Optimal sliding-mode guidance with terminal velocity constraint for fixed-interval propulsive maneuvers[J]. Acta Astronautica, 2008, 62(10-11): 556-562.
[90] Li G L, Ji H B. A Finite time convergent guidance law with terminal angle constraint considering missile autopilot[C]//Proceedings of 2014 11th World Congress on Intelligent Control and Automation (WCICA). Piscataway, NJ: IEEE Press, 2014: 3948-3954.
[91] Fu J, Wu Q X, Jiang C S, et al. Robust sliding mode control with unidirectional auxiliary surfaces for nonlinear system with state constraints[J]. Control and Decision, 2011, 26(9): 1288-1294 (in Chinese). 傅健, 吴庆宪, 姜长生, 等. 带状态约束的非线性系统单向辅助面滑模控制[J]. 控制与决策, 2011, 26(9): 1288-1294.
[92] Fu J, Wu Q X, Chen W H, et al. Chattering-free condition for sliding mode control with unidirectional auxiliary surfaces[J]. Transactions of the Institute of Measurement & Control, 2013, 35(5): 593-605.
[93] Fu J, Wu Q X, Jiang C S, et al. Robust sliding mode positively invariant set for nonlinear continuous system[J]. Acta Automatica Sinica, 2011, 37(11): 1395-1401 (in Chinese). 傅健, 吴庆宪, 姜长生, 等. 连续非线性系统的滑模鲁棒正不变集控制[J]. 自动化学报, 2011, 37(11): 1395-1401.
[94] Lee C H, Kim T H, Tahk M J, et al. Polynomial guidance laws considering terminal impact angle and acceleration constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 74-92.
[95] Xi Y G, Li D W, Lin S. Model predictive control—Status and challenges[J]. Acta Automatica Sinica, 2013, 39(3): 222-236 (in Chinese). 席裕庚, 李德伟, 林姝. 模型预测控制——现状与挑战[J]. 自动化学报, 2013, 39(3): 222-236.
[96] Borrelli F, Baotic' M, Pekar J, et al. On the computation of linear model predictive control laws[J]. Automatica, 2010, 46(6): 1035-1041.
[97] Kouramas K I, Faísca N P, Panos C, et al. Explicit/multi-parametric model predictive control (MPC) of linear discrete-time systems by dynamic and multi-parametric programming[J]. Automatica, 2011, 47(8): 1638-1645.
[98] Bemporad A, Morari M, Dua V, et al. The explicit linear quadratic regulator for constrained systems[J]. Automatica, 2002, 38(1): 3-20.
[99] Grancharova A, Johansen T A. Survey of explicit approaches to constrained optimal control[M]. Berlin: Springer Heidelberg, 2005: 47-97.
[100] Menon P K, Sweriduk G D, Ohlmeyer E J, et al. Integrated guidance and control of moving-mass actuated kinetic warheads[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(1): 118-126.
[101] Zhang Y G, Zhang Y A, Jia Y J. An under actuated sys-tem control method to time and angle cooperative guidance for multi-missiles[J]. Journal of Naval Aeronautical and Astronautical University, 2011, 26(2): 126-130 (in Chinese) 张友根, 张友安, 贾永强. 欠驱动系统控制方法实现导弹时间与角度协同[J]. 海军航空工程学院学报, 2011, 26(2): 126-130.
[102] Li X, Yang B, Yao Y. Autonomous approach and fly around a target satellite with input constraints[C]//Proceedings of AIAA Guidance Navigation and Control Conference. Reston: AIAA, 2013: 1-14.
[103] Jiang Y, He F, Yao Y. Hybrid control strategy for attitude stabilization of an underactuated spacecraft with two moving mass[C]//Proceedings of IEEE International Conference on Automation and Logistics. Piscataway, NJ: IEEE Press, 2007: 389-393.
[104] Cao X X, Hu C H, Qiao J F, et al. Active fault-tolerant control for missile actuators based on fault compensation idea[J]. Electronics Optics & Control, 2013, 20(3): 30-34 (in Chinese). 曹祥宇, 胡昌华, 乔俊峰, 等. 基于故障补偿思想的导弹执行机构主动容错控制研究[J]. 电光与控制, 2013, 20(3): 30-34.
[105] Cao X X, Hu C H, Qiao J F. Integrated fault-tolerant control for missile attitude control system subjected to actuator faults[J]. Journal of Astronautics, 2013, 34(7): 938-945 (in Chinese). 曹祥宇, 胡昌华, 乔俊峰. 考虑执行机构故障的导弹姿态控制系统的集成容错控制[J]. 宇航学报, 2013, 34(7): 938-945.
[106] Wang J. Research on aerodynamic thermal ablation prediction and control for hypersonic vehicle[D]. Guangzhou: South China University of Technology, 2013 (in Chinese). 王俊. 高超声速飞行器气动热烧蚀预测与控制研究[D]. 广州: 华南理工大学, 2013.
[107] Augenstein S, Rock S M. Simultaneous estimation of target pose and 3-D shape using the fastslam algorithm[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2009.
[108] Lichter M D, Dubowsky S. State, shape, and parameter estimation of space objects from range images[C]//Proceedings of 2004 IEEE International Conference on Robotics and Automation. Piscataway, NJ: IEEE Press, 2004: 2974-2979.
[109] Hillenbrand U, Lampariello R. Motion and parameter estimation of a free-floating space object from range data for motion prediction[C]//Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics, and Automation in Space. 2005.
[110] Subbarao K, McDonald J. Multi-sensor fusion based relative navigation for synchronization and capture of free floating spacecraft[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2005: 15-18.
[111] Ruel S, English C, Anctil M, et al. 3DLASSO: real-time pose estimation from 3D data for autonomous satellite servicing[C]//Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space. 2005.
[112] Aghili F. Optimal control for robotic capturing and passivation of a tumbling satellite with unknown dynamics, AIAA-2008-7274[R]. Reston: AIAA, 2008.
[113] Segal S, Gurfil P. Stereoscopic Vision-Based Spacecraft Relative State Estimation, AIAA-2009-6094[R]. Reston: AIAA, 2009.
[114] Wang J W, He F H, Yang B Q, et al. Fly-by guidance problem of a flight vehicle: analysis and design, AIAA-2013-4773[R]. Reston: AIAA, 2013.
[115] Yu Y. Passive range-finding method of infrared imaging target based on characteristic lines[J]. Shipboard Electronic Countermeasure, 2009, 32(6): 86-90 (in Chinese). 于勇. 基于特征直线的红外成像目标被动测距方法[J]. 舰船电子对抗, 2009, 32(6): 86-90.
[116] Pu J L, Cui N G, Rong S Y. Passive ranging algorithm in terms of polar coordinates[J]. Journal of Harbin Institute of Technology, 2009, 16(3): 428-430.
[117] Wang W P, Wei H G, Liao S, et al. Observability analysis and filtering algorithms for passive ranging[J]. Infrared & Laser Engineering, 2009, 38(6): 1083-1088 (in Chinese). 王万平, 魏宏刚, 廖胜, 等. 被动测距的可观测性分析和滤波方法[J]. 红外与激光工程, 2009, 38(6): 1083-1088.
[118] Yang B Q. Research on guidance and control law for exo-atmospheric KKV based on predictive control[D]. Harbin: Harbin Institute of Technology, 2009 (in Chinese). 杨宝庆. 基于预测控制的大气层外KKV制导控制规律研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
[119] Shi Z J, Lu Y F, Zhang D H. A proporional navigaion law for improving target-finding accuracy to very small tactical missile[J]. Journal of Northwestern Polytechnical University, 1993, 11(2): 189-193 (in Chinese). 施志桂, 陆毓峰, 张殿祐. 一种能实现超前偏置的比例导引律[J]. 西北工业大学学报, 1993, 11(2): 189-193.
[120] Wang K, Dang L. Design on biased guidance law of exoatmospheric interceptor[J]. Aero Weaponry, 2013 (5): 26-29 (in Chinese). 王珂, 党琳. 大气层外拦截器偏置导引律设计[J]. 航空兵器, 2013 (5): 26-29.
[121] Li G H. Study on terminal guidance of flyby spacecraft[D]. Changsha: National University of Defense technology, 2011 (in Chinese). 李广华. 近旁飞越航天器末制导方法研究[D]. 长沙:国防科学技术大学, 2011.
[122] Wonham W M. On the separation theorem of stochastic control[J]. SIAM Journal on Control, 1968, 6(2): 312-326.
[123] Shinar J, Oshman Y, Turetsky V. Optimal integration of estimation and guidance for interceptors, Technical Report No. 0704-0188[R]. Israel: Technion-Israel Institute of Science and Technology, 2005.
[124] Shinar J, Turetsky V, Oshman Y. New logic-based estimation/guidance algorithm for improved homing against randomly maneuvering targets, AIAA-2004-4886[R]. Reston: AIAA, 2004.
[125] Shinar J, Turetsky V. Further improved homing accuracy in ballistic missile defense against randomly maneuvering targets AIAA-2005-6160[R]. Reston: AIAA, 2005.
[126] Shaviv I G, Oshman Y. Guidance without assuming separation, AIAA-2005-6154[R]. Reston: AIAA, 2005.
[127] Dionne D, Michalska H, Rabbath C A. A predictive guidance law with uncertain information about the target state[C]//Proceedings of 2006 American Control Conference. Piscataway, NJ: IEEE Press, 2006.
[128] Yang B Q, Liu H H, Yao Y. Cooperative interception guidance for multiple vehicles: A receding horizon optimization approach[C]//Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference. Piscataway, NJ: IEEE Press, 2014: 827-831.
[129] Chao T, Wang S, Tian G, et al. Integrated guidance and control with terminal impact angular constraint for bank to turn flight vehicle[C]//Proceedings of 2014 33rd Chinese Control Conference (CCC). Piscataway, NJ: IEEE Press, 2014: 681-685.
[130] Wang X H, Wang J Z. Integrated missile guidance and control using adaptive sliding mode approach[C]//Proceedings of 2012 31st Chinese Control Conference (CCC). Piscataway, NJ: IEEE Press, 2012: 4611-4616.
[131] Erdos D, Shima T, Kharisov E, et al. L1 adaptive control integrated missile autopilot and guidance, AIAA-2012-4465[R]. Reston: AIAA, 2012.
[132] Song H, Zhang T, Zhang G, et al. Integrated design of interceptor guidance and control based on L1 adaptive control[C]//Proceedings of 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). Piscataway, NJ: IEEE Press, 2013: 525-528.
[133] Fan Z, Yu D, Zhao H, et al. Integrated backstepping guidance and control design with impact angle constraint[C]//Proceedings of 2011 International Conference in Electrics, Communication and Automatic Control Proceedings. New York: Springer, 2012: 1107-1113.
[134] Zhao C Z, Huang Y. Adrc based integrated guidance and control scheme[J]. Journal of Systems Science and Mathematical Sciences, 2010, 30(6): 742-751 (in Chinese). 赵春哲, 黄一. 基于自抗扰控制的制导与运动控制一体化设计[J]. 系统科学与数学, 2010, 30(6): 742-751.
[135] Xue W C, Huang C D, Huang Y. Design methods for the integrated guidance and control system[J]. Control Theory & Applications, 2013, 30(12): 1511-1520 (in Chinese). 薛文超, 黄朝东, 黄一. 飞行制导控制一体化设计方法综述[J]. 控制理论与应用, 2013, 30(12): 1511-1520.
[136] Shao X L, Wang H L. Back-stepping active disturbance rejection control design for integrated missile guidance and control system via reduced-order ESO[J]. ISA Transactions, 2015 (in press).
[137] Shamaghdari S, Nikravesh S K Y, Haeri M. Integrated guidance and control of elastic flight vehicle based on robust MPC[J]. International Journal of Robust and Nonlinear Control, 2014, DOI: 10.1002/rnc.3215 (in press).
[138] Yan H, Ji H. Integrated guidance and control for dual-control missiles based on small-gain theorem[J]. Automatica, 2012, 48(10): 2686-2692.
[139] Shu Y, Tang S. Integrated robust dynamic inversion design of missile guidance and control based on nonlinear disturb-ance observer[C]//Proceedings of 2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC). Piscataway, NJ: IEEE Press, 2012: 42-45.
[140] Restrepo C, Hurtado J E. Pattern recognition for a flight dynamics Monte Carlo simulation, AIAA-2011-6590[R]. Reston: AIAA, 2011.
[141] Zarchan P. Complete statistical analysis of nonlinear missile guidance systems-SLAM[J]. Journal of Guidance, Control, and Dynamics, 1979, 2(1): 71-78.
[142] Weiss M, Adjoint method for missile performance analysis on state-space models[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(2): 236-248.
[143] Ohlmeyer E. Root-mean-square miss distance of proportional navigation missile against sinusoidal target[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(3): 563-568.
[144] Yanushevsky R. Analysis of optimal weaving frequency of maneuvering targets[J]. Journal of Spacecraft and Rockets, 2004, 41(3): 477-479.
[145] Mracek C P. A miss distance study for homing missiles: tail vs canard control, AIAA-2006-6082[R]. Reston: AIAA, 2006.
[146] Weiss M, Rol M, Falkena W. Guidance performance analysis in the presence of model uncertainties, AIAA-2007-6786[R]. Reston: AIAA, 2007.
[147] Bucco D, Weiss M. Blind range influence on guidance loop performance: an adjoint-based analysis, AIAA-2013-4953[R]. Reston: AIAA, 2013.
[148] Gelb A, Warren R S. Direct statistical analysis of nonlinear systems-CADET[J]. AIAA Journal, 1973, 11(5): 689-694.
[149] Li H P, Zhong R L, Wei Y, et al. Research on covariance method of accuracy analysis in missile terminal guidance[J]. Tactical Missile Technology, 2004(1): 49-54 (in Chinese). 李海平, 钟瑞麟, 魏岳, 等. 导弹末制导精度分析的协方差方法研究[J]. 战术导弹技术, 2004(1): 49-54.
[150] Ji D G, Yao Y, He F H. Finite-time H2 performance analysis considering target maneuvers and guidance loop dynamics[C]//Proceedings of International Symposium on Systems & Control in Aerospace & Astronautics. Piscataway, NJ: IEEE Press, 2008: 1-4.
[151] Ji D G. Performance analysis via finite-time norm for terminal guidance system[D]. Harbin: Harbin Institute of Technology, 2008 (in Chinese). 季登高. 基于有限时间范数的末制导系统性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2008.
[152] Ji D G, He F H, Yao Y. Finite time L1 approach for missile overload requirement analysis in terminal guidance[J]. Chinese Journal of Aeronautics, 2009, 22(4): 413-418.
[153] Ji D G, Yao Y. Zero effort miss distance dynamics analysis in homing missile based on spectrum method[J]. Journal of Astronautics, 2008, 29(2): 605-609 (in Chinese). 季登高, 姚郁. 基于谱方法的寻的导弹零效脱靶量性能分析[J]. 宇航学报, 2008, 29(2): 605-609.
[154] He F, Wang L, Wang J, et al. A finite-time generalized H2 gain measure and its per-formance criterion[C]//Proceedings of 2013 9th Asian Control Conference (ASCC). Piscataway, NJ: IEEE Press, 2013: 1-6.
[155] He F, Wang L, Chen W. The terminal guidance system performance analysis: A finite-time gain measurement approach[C]//Proceedings of AIAA Guidance, Navigation, and Control. Reston: AIAA, 2013.
[156] He F, Wang L, Yao Y, et al. A finite-time gain measure approach of linear time-varying systems: Analysis and design[C]//Proceedings of 2014 American Control Conference (ACC). Piscataway, NJ: IEEE Press, 2014: 5168-5173.
/
〈 | 〉 |