Electronics and Control

Dynamic decoupling control and disturbance compensation of gimbal servo system of double gimbal MSCMG

  • CUI Peiling ,
  • YANG Shan ,
  • LI Haitao
Expand
  • 1. School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100083, China;
    2. Science and Technology on Inertial Laboratory, Beijing Unicersity, Beijing 100083, China

Received date: 2015-04-09

  Revised date: 2015-05-29

  Online published: 2015-06-07

Supported by

National Natural Science Foundation of China(61203112)

Abstract

The gimbal servo system of the double gimbal magnetically suspended control moment gyroscope(MSCMG) is a complex system with characteristics of multivariable, nonlinearity and strong coupling. In order to solve the problem that the speed-servo performance of gimbal system will be influenced by coupling moment as well as the residual coupling, convected torque caused by satellite and nonlinear friction after decoupling, the state feedback linearization decoupling method based on differential geometry combined with the extended state observer(ESO) is proposed to eliminate the influence of the coupling moment on the servo control performance of the gimbal system. Meanwhile, the convected torque caused by satellite and nonlinear friction is compensated based on linearization decoupling. The simulation results indicate that the velocity maximum fluctuation of inner and outer gimbal system caused by coupling moment respectively decreases from 0.18(°)/s and 0.12(°)/s to 5×10-3(°)/s and 4×10-3(°)/s; the sinusoidal velocity error of inner and outer gimbal system decreases from 0.18(°)/s and 0.19(°)/s to 0.005(°)/s and 0.004(°)/s. The results verify that the dynamic decoupling has been realized, and the nonlinear friction and convected torque caused by satellite have been compensated effectively. The decoupling performance and speed-servo precision of gimbal servo system are improved.

Cite this article

CUI Peiling , YANG Shan , LI Haitao . Dynamic decoupling control and disturbance compensation of gimbal servo system of double gimbal MSCMG[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(3) : 916 -927 . DOI: 10.7527/S1000-6893.2015.0163

References

[1] BHAT S P, TIWARI P K. Controllability of spacecraft attitude using control moment gyroscopes[J]. IEEE Transactions on Automatic Control, 2009, 54(3):585-590.
[2] HAN B C, ZHENG S Q, WANG X, et al. Integral design and analysis of passive magnetic bearing and active radial magnetic bearing for agile satellite application[J]. IEEE Transactions on Magnetics, 2012, 48(6):1959-1966.
[3] REN Y, FANG J C. High-stability and fast-response twisting motion control for the magnetically suspended rotor system in a control moment gyro[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(5):1625-1634.
[4] 李海涛, 房建成. 基于扩张状态观测器的DGMSCMG框架伺服系统振动抑制方法[J]. 航空学报, 2010, 31(6):1213-1219. LI H T, FANG J C. Study on system vibration suppression method based on ESO used in gimbal servo system of DGMSCMG[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1213-1219(in Chinese).
[5] FANG J C, LI H T, HAN B C. Torque ripple reduction in BLDC torque motor with nonideal back EMF[J]. IEEE Transactions on Power Electronics, 2012, 27(11):4630-4637.
[6] 魏彤, 房建成. 磁悬浮控制力矩陀螺的动框架效应及其角速率前馈控制方法研究[J]. 宇航学报, 2005, 26(1):19-23. WEI T, FANG J C. Moving-gimbal effect and angular rate feedforward control in magnetically suspended rotor system of CMG[J]. Journal of Astronautics, 2005, 26(1):19-23(in Chinese).
[7] 魏彤, 房建成. 双框架磁悬浮控制力矩陀螺动框架效应补偿方法[J]. 机械工程学报, 2010, 46(2):159-165. WEI T, FANG J C. Moving-gimbal effects compensation of double gimbal magnetically suspended control moment gyroscope based on compound control[J]. Journal of Mechanical Engineering, 2010, 46(2):159-165(in Chinese).
[8] FANG J C, REN Y. Decoupling control of magnetically suspended rotor system in control moment gyros based on an inverse system method[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(6):1133-1144.
[9] TUAN N N, STEVEN S, HUNG T N. Neural network based diagonal decoupling control of powered wheelchair systems[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22(2):371-378.
[10] LI J, LI S H, CHEN X S, et al. RBFNDOB-based neural network inverse control for non-minimum phase MIMO system with disturbances[J]. ISA Transactions in Disturbance Estimation and Mitigation, 2014, 53(4):983-993.
[11] 程启明, 杜许峰, 郭瑞青, 等. 基于最小二乘支持向量机的多变量逆系统控制方法及应用[J]. 中国电机工程学报, 2008, 28(35):96-101. CHENG Q M, DU X F, GUO R Q, et al. Decoupling compound control method based on least squares support vector machines multivariable inverse system and its application[J]. Proceedings of the CSEE, 2008, 28(35):96-101(in Chinese).
[12] WU M, YAN J, SHE J H, et al. Intelligent decoupling control of gas collection process of multiple asymmetric coke ovens[J]. IEEE Transactions on Industrial Electronics, 2009, 56(7):2782-2792.
[13] FANG J C, REN Y. High-precision control for a single-gimbal magnetically suspended control moment gyro based on inverse system method[J]. IEEE Transactions on Industrial Electronics, 2011, 58(9):4331-4342.
[14] 陈晓岑, 周东华, 陈茂银. 基于逆系统方法的双框架MSCMG框架伺服系统解耦控制研究[J]. 自动化学报, 2013, 39(5):502-508. CHEN X C, ZHOU D H, CHEN M Y. Decoupling control of the gimbal servo-system of the DGMSCMG based on the dynamic inverse system method[J]. Acta Automatica Sinica, 2013, 39(5):502-508(in Chinese).
[15] REN Y, FANG J C. High precision and strong-robustness control for an MSCMG based on modal separation and rotation motion decoupling strategy[J]. IEEE Transactions on Industrial Electronics, 2014, 61(3):1539-1551.
[16] 于波, 陈云相, 郭秀中. 惯性技术[M]. 北京:北京航空航天大学出版社, 1994:1-39. YU B, CHEN Y X, GUO X Z. Inertial technology[M]. Beijing:Beihang University Press, 1994:1-39(in Chinese).
[17] 杨倩, 崔培玲, 韩邦成. 卫星机动时DGMSCMG磁悬浮转子干扰补偿控制[J]. 宇航学报, 2012, 33(6):720-727. YANG Q, CUI P L, HAN B C. Disturbance compensation control of magnetically suspended rotor of DGMSCMG during spacecraft attitude maneuver[J]. Journal of Astronautics, 2012, 33(6):720-727(in Chinese).
[18] 韩邦成, 杨莲慧, 李海涛. 动基座下DGCMG框架伺服系统干扰补偿控制[J]. 振动、测试与诊断, 2014, 34(4):686-692. HAN B C, YANG L H, LI H T. Disturbance compensation control of gimbal servo system for DGCMG used in spacecraft[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(4):686-692(in Chinese).
[19] 张景瑞. 灵敏卫星快速倾斜机动的MSCMG参数和力矩估算[J]. 清华大学学报:自然科学版, 2007, 47(11):2040-2043. ZHANG J R. Estimation of MSCMG parameters and torques for rapid slewing maneuver of agile spacecraft[J]. Journal of Tsinghua University:Science and Technology, 2007, 47(11):2040-2043(in Chinese).
[20] 吴忠, 张激扬. 控制力矩陀螺框架伺服系统动力学建模与控制[J].应用基础与工程科学学报, 2007, 15(1):130-136. WU Z, ZHANG J Y. Dynamics and control of gimbal servo systems for control moment gyroscopes[J]. Journal of Basic Science and Engineering, 2007, 15(1):130-136(in Chinese).
[21] 姜长生, 吴庆宪, 费树岷. 现代非线性系统鲁棒控制基础[M]. 哈尔滨:哈尔滨工业大学出版社, 2008:30-46. JIANG C S, WU Q X, FEI S M. Robust control basis of modern nonlinear systems[M]. Harbin:Harbin Institute of Technology Press, 2008:30-46(in Chinese).
[22] 韩京清. 自抗扰控制技术——估计补偿不确定因素的控制技术[M]. 北京:国防工业出版社, 2008:150-260. HAN J Q. Active disturbance rejection control technique-The technique for estimating and compensation the uncertainties[M]. Beijing:National Defence Industry Press, 2008:150-260(in Chinese).
[23] SU Y X, ZHENG C H, DUAN B Y. Automatic disturbances rejection controller for precise motion control of permanent magnet synchronous motors[J]. IEEE Transactions on Industrial Electronics, 2005, 52(3):814-823.
[24] ZHAO H X, CHEN S L, LI M. A sufficient condition for the stability of the third-order extended state observer[C]//Proceedings of the 32nd Chinese Control Conference, 2013:1526-1531.
[25] 刘金琨. 滑模变结构控制MATLAB仿真[M]. 北京:清华大学出版社, 2005:50-59. LIU J K. MATLAB simulation for sliding mode control[M]. Beijing:Tsinghua University Press, 2005:50-59(in Chinese).

Outlines

/