ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Research of solid ducted rocket combustion efficiency based on design of experiment methodology
Received date: 2015-01-16
Revised date: 2015-05-04
Online published: 2015-06-04
Supported by
National Basic Research Program of China (613161-03-01)
To study the combustion efficiency of air and primary fuel in the combustor of solid ducted rocket with twin-90°ventral 2D inlets, five factors including numbers of fuel inlets,dome height, rate of the length of combustion and diameter,air-flow angle and air-flow velocity are selected as the influence factors of secondary combustion efficiency. And, the five-factor and two-level table is established based on design of experiment (DOE) methodology. Flow fields of 32 combustors with different structures in above DOE table are studied by numerical simulation. Then, the simulation results are analyzed by using data processing procedure of DOE and the effect of five factors on combustion efficiency is obtained. To validate the results of simulation,performance of five different combustors in the DOE table are tested in the direct-connect experiment facility and the simulation result matches up well with the experiment result. In this paper, the DOE methodology has been successfully applied in the research of combustion performance of solid ducted rocket, and supplies a new feasible approach for the improvement of engine performance.It can be concluded that the research in this paper is valuable in the domain of engineering application.
SHAN Ruizi , CAO Junwei , MO Zhan , CHEN Zhiming . Research of solid ducted rocket combustion efficiency based on design of experiment methodology[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(9) : 2859 -2868 . DOI: 10.7527/S1000-6893.2015.0116
[1] Cao J W, Wang H G. Predominance of ducted solid rocket ramjet applied to airborne missile[J]. Aero Weaponry, 2009(2): 47-49 (in Chinese). 曹军伟, 王虎干. 固体火箭冲压发动机在空空导弹上应用的优势[J]. 航空兵器, 2009(2): 47-49.
[2] Huo D X, Chen L Q, Liu N S, et al. Effects of boron particles diameter on ignition position and combustion efficiency[J]. Journal of Solid Rocket Technology, 2004, 27(4): 31-34 (in Chinese). 霍东兴, 陈林泉, 刘霓生, 等. 硼粒子直径对点火位置及燃烧效率的影响研究[J]. 固体火箭技术, 2004, 27(4): 31-34.
[3] Xu C, Li J X, Feng X P, et al. Influence of afterburning chamber length on secondary combustion for solid ducted rocket motor[J]. Journal of Solid Rocket Technology, 2007, 30(4): 292-294 (in Chinese). 许超, 李进贤, 冯喜平, 等. 补燃室长度对固冲发动机二次燃烧的影响[J]. 固体火箭技术, 2007, 30(4): 292-294.
[4] Li Z Y, Hu J X, Xia Z X, et al. Effects of side-inlet angle on the performance of boron-based propellant ducted rocket[J]. Journal of National University of Defense Technology, 2008, 30(2): 5-8 (in Chinese). 李泽勇, 胡建新, 夏智勋, 等.进气道角度对含硼推进剂固冲发动机性能的影响[J]. 国防科技大学学报, 2008, 30(2): 5-8.
[5] Wan S W, He G Q. The effect of mixing-enhanced device on the combustion performance of solide rocket-ramjet motor[J]. Journal of Projectiles, Rockets, Missiles and Guidance , 2011, 31(4): 108-109 (in Chinese). 万少文, 何国强. 掺混装置对固冲发动机掺混燃烧性能的影响[J]. 弹箭与制导学报, 2011, 31(4): 108-109.
[6] Tian L H, Tian W P, Dong X G, et al. Effect of structural parameters of afterburning chamber on mixing and combustion efficiency for solid rocket ramjet[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(4): 128-130 (in Chinese). 田凌寒, 田维平, 董新刚, 等. 固体冲压发动机补燃室结构参数对掺混燃烧效率的影响[J]. 弹箭与制导学报, 2014, 34(4): 128-130.
[7] Wang X L, Sun Z H, He Y J, et al. Research on internal flowfield in afterburning chamber of ducted rocket with a head bilateral inlet configuration[J]. Aero Weaponry, 2011(5): 53-57 (in Chinese). 王希亮, 孙振华, 贺永杰, 等. 头部两侧进气固冲发动机补燃室内流场研究[J]. 航空兵器, 2011(5): 53-57.
[8] Zhang C J, Guo J W,Wei X S. Experimental design and data processing[M]. Beijing: Chemical Industry Press, 2009: 8-35 (in Chinese). 张成军, 郭继伟, 魏绪树. 实验设计与数据处理[M]. 北京: 化学工业出版社, 2009: 8-35.
[9] Chen K.Design and analysis of experiments[M]. Beijing: Tsinghua University Press, 1998: 27-40 (in Chinese). 陈魁. 实验设计与分析[M]. 北京: 清华大学出版社, 1998: 27-40.
[10] Natan B, Gany A. Ignition and combustion of boron particles in the flowfield of a solid fuel ramjet[J]. Journal of Propulsion and Power, 1991, 7(1): 37-43.
[11] Ma Z B, Zhang Z P, Cai X Y. Numerical study of mixing flows in a ducted rocket combustor[J]. Journal of Propulsion Technology, 1998, 19(4): 33-36 (in Chinese). 马智博, 张振鹏, 蔡选义. 3 火箭冲压发动机掺混流场数值方法研究[J]. 推进技术, 1998, 19(4): 33-36.
[12] Vanka S P. Analytical characterization of flow fields in side inlet dump combustors, AIAA-1983-1399[R]. Reston: AIAA, 1983.
[13] King M K. Boron ignition and combustion in air augmented rocket afterburners[J]. Combustion Science and Technology, 1972, 5(4): 155-164.
[14] King M K. Boron particle ignition in hot gas stream[J]. Combustion Science and Technology, 1973, 8(5-6): 255-273.
[15] King M K. Ignitionand combustion of boron particles and clouds[J]. Journal of Spacecraft, 1982, 19(4): 294-305.
[16] Mohan G, Willams F A. Ignition and combustion of boron in O2/inert atmospheres[J]. AIAA Journal, 1974, 10(6):776-783.
[17] Yeh C L, Kuo K K. Ignition and combustion of boron particles[J]. Progress of Energy and Combustion Science, 1996, 22(3): 511-541.
[18] Yang S, Feng X P, Lin Z Y. Analysis of boron particle combustion in hot air[J]. Journal of Solid Rocket Technology, 2011, 34(2): 95-98 (in Chinese). 杨澍, 冯喜平, 林志远. 热空气中硼粒子燃烧分析[J].固体火箭技术, 2011, 34(2): 95-98.
[19] Dong Y, Yu W Z, Lv X C. Numerical simulation and experimental investigation on the airbreathing combustor of a solid propellant ramrocket[J]. Journal of Propulsion Technology, 1995(1): 27-32 (in Chinese). 董岩, 余为众, 吕希诚. 固体火箭冲压发动机二次燃烧室流场数值计算和试验研究[J]. 推进技术, 1995(1): 27-32.
[20] Wang Y Q, Li L H, Liu M L, et al. Analysis of combustion efficiency for ducted rocket[J]. Journal of Propulsion Technology, 2011, 32(4): 75-79 (in Chinese). 王玉清, 李立翰, 刘鸣雳, 等. 固体火箭冲压发动机燃烧性能评价方法[J]. 推进技术, 2011, 32(4): 75-79.
/
〈 | 〉 |