ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Effect of task complexity on automation awareness
Received date: 2014-11-04
Revised date: 2015-06-01
Online published: 2015-06-04
Supported by
National Natural Science Foundation of China (70931003);China Postdoctoral Science Foundation (2015M570120)
High automation in modern cockpits easily leads to pilots' automation complacency and reliance and then impairs pilots' automation awareness. Failure of automation awareness is one of the major factors influencing aviation incidents and accidents. By investigating the effect of task complexity on automation awareness and the causes of failure of automation awareness, it shows that the possibility of failure of automation awareness in the high-complexity task is higher than that in the low-complexity task and that insufficient attention allocation and automation complacency are two major factors contributing to the failure of automation awareness. It implies that it is hard for human being to detect automation failures and make effective operations when automation fails under high-workload conditions. Consequently,enhancing automation awareness is important for maintaining aviation safety.
LIU Peng , LYU Xi , LI Zhizhong . Effect of task complexity on automation awareness[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(11) : 3678 -3686 . DOI: 10.7527/S1000-6893.2015.0166
[1] National Transportation Safety Board. Investigation of the Asiana airlines flight 214 landing accident at San Francisco international airport, California, July 6, 2013, DCA-13-MA-120[R]. Washington, D.C.:National Transportation Safety Board, 2013.
[2] National Transportation Safety Board. Crash of Asiana Flight 214 accident report summary[EB/OL]. (2014-06-24)[2014-07-24]. http://www.ntsb.gov/news/events/2014/asiana214/index.html.
[3] Sun R S, Liu H H. Autopilot and flight safety[J]. Industrial Engineering Journal, 1999, 2(2):40-44(in Chinese).孙瑞山,刘汉辉.自动驾驶与安全飞行[J].工业工程, 1999, 2(2):40-44.
[4] Sheridan T B. Human and automation:System design and research issues[M]. Hoboken, NJ:John Wiley & Sons,2002.
[5] Wei Z M, Zhuang D M, Wanyan X R, et al. A model for discrimination and prediction of mental workload of aircraft cockpit display interface[J]. Chinese Journal of Aeronautics, 2014, 27(5):1070-1077.
[6] Wiener E L. Human factors of advanced technology ("glass cockpit") transport aircraft, NASA-CR-177528[R]. Moffett Field, CA:NASA Ames Research Center,1989.
[7] Sarter N B, Woods D D, Billings C E. Automation surprises[C]//Salvendy G. Handbook of human factors & ergonomics. Hoboken, NJ:Wiley, 1997:1926-1943.
[8] Sarter N B, Woods D D. How in the world did we ever get into that mode? Mode error and awareness in supervisory control[J]. Human Factors, 1995, 37(1):5-19.
[9] Sarter N. Investigating mode errors on automated flight decks:Illustrating the problem-driven, cumulative, and interdisciplinary nature of human factors research[J]. Human Factors, 2008, 50(3):506-510.
[10] Woods D D, Roth E M, Stubler W F, et al. Navigating through large display networks in dynamic control applications[C]//Proceedings of the Human Factors Society 34th Annual Meeting. Santa Monica, CA:Human Factors Society, 1990:396-399.
[11] Parasuraman R, Manzey D H. Complacency and bias in human use of automation:An attentional integration[J]. Human Factors, 2010, 52(3):381-410.
[12] Parasuraman R, Riley V. Humans and automation:Use, misuse, disuse, abuse[J]. Human Factors, 1997, 39(2):230-253.
[13] Endsley M R. Automation and situation awareness[C]//Parasuraman R, Mouloua M. Automation and human performance:Theory and applications. Hillsdale, NJ:Erlbaum, 1996:163-181.
[14] Bainbridge L. Ironies of automation[J]. Automatica, 1983,19(6):775-779.
[15] Sarter N B, Mumaw R J, Wickens C D. Pilots' monitoring strategies and performance on automated flight decks:An empirical study combining behavioral and eye-tracking data[J]. Human Factors, 2007, 49(3):347-357.
[16] Xu W. Psychological studies of human-automation interactions in automated cockpits[J]. Psychological Science, 2003, 26(3):523-524(in Chinese).许为.自动化飞机驾驶舱中人-自动化系统交互作用的心理学研究[J].心理科学, 2003, 26(3):523-524.
[17] Chen J, Li Q. Cockpit automation and human factors[J]. Journal of Civil Aviation Flight University of China, 2011, 22(2):36-39(in Chinese).陈俊,李倩.驾驶舱自动化与人的因素[J].中国民航飞行学院学报, 2011, 22(2):36-39.
[18] He Q, Zhang L Y. Human factors problems in cockpit automation[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(Sup.):60-63(in Chinese).贺青,张林英.座舱自动化中人的因素[J].航空学报, 1999, 20(Sup.):60-63.
[19] Miller W D. The U.S. Air Force-developed adaptation of the multi-attribute task battery for the assessment of human operator workload and strategic behavior, AFRL-RH-WP-TR-2010-0133[R]. Wright-Patterson AFB, OH:Air Force Research Laboratory, 2010.
[20] Comstock J R, Arnegard R J. The multi-attribute task battery for human operator workload and strategic behavior research, NASA-TM-104174[R]. Washington, D.C.:NASALangley Research Center, 1992.
[21] Parasuraman R, Molloy R, Mouloua M, et al. Monitoring of automated systems[C]//Parasuraman R, Mouloua M. Automation and human performance:Theory and applications. Mahwah, NJ:Lawrence Erlbaum Associates, 1996:91-115.
[22] Wickens C D, Hollands J G, Banbury S, et al. Engineering psychology and human performance[M]. 4th ed. Boston, MA:Pearson Education, 2013.
[23] Yang J Z, Rantanen E M, Zhang K. The impact of traffic complexity factors on air traffic controller mental workload and situation awareness[J]. Psychological Science, 2010, 33(2):368-371(in Chinese).杨家忠, Rantanen E M,张侃.交通复杂度因素对空中交通管制员脑力负荷与情境意识的影响[J].心理科学, 2010, 33(2):368-371.
[24] Liu P, Li Z. Comparison of task complexity measures for emergency operating procedures:Convergent validity and predictive validity[J]. Reliability Engineering and System Safety, 2014, 121:289-293.
[25] Gertman D, Blackman H, Marble J, et al. The SPAR-H human reliability analysis method, NUREG/CR-6883[R]. Washington, D.C.:U.S. Nuclear Regulatory Commission, 2005.
[26] Molloy R, Parasuraman R. Monitoring an automated system for a single failure:Vigilance and task complexity effects[J]. Human Factors, 1996, 38(2):311-322.
[27] Dehais F, Peysakhovich V, Scannella S, et al. "Automation surprise" in aviation:Real-time solutions[C]//Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing System. New York, NY:ACM, 2015:2525-2534.
[28] Simons D J, Levin D T. Change blindness[J]. Trends in Cognitive Science, 1997, 1(7):261-267.
[29] Jensen M S, Yao R, Street W N, et al. Change blindness and inattentional blindness[J]. Cognitive Science, 2011, 2(5):529-546.
[30] Wickens C D, Hooey B L, Gore B F, et al. Identifying black swans in NextGen:Predicting human performance in off-nominal conditions[J]. Human Factors, 2009, 51(5):638-651.
[31] Dehais F, Causse M, Vachon F, et al. Failure to detect critical auditory alerts in the cockpit:Evidence for inattentional deafness[J]. Human Factors, 2014, 56(4):631-644.
[32] Manly T, Robertson I H, Galloway M, et al. The absent mind:Further investigations of sustained attention to response[J]. Neuropsychologia, 1999, 37(6):661-670.
[33] Helton W S, Warm J S. Signal salience and the mindlessness theory of vigilance[J]. Acta Psychologica, 2008, 129(2):18-25.
[34] Funk K, Lyall B, Wilson J, et al. Flight deck automation issues[J]. International Journal of Aviation Psychology, 1999, 9(2):109-123.
[35] Moray N, Inagaki T. Attention and complacency[J]. Theoretical Issues in Ergonomics Science, 2000, 1(4):354-365.
/
〈 | 〉 |