Material Engineering and Mechanical Manufacturing

Filling rules in thin-walled and ribbed conical ring rolling for TC4 titanium alloy

  • GUO Lianggang ,
  • YANG He ,
  • DI Weijia ,
  • CHEN Fulong ,
  • ZHU Shuai
Expand
  • 1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China;
    2. AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China

Received date: 2015-04-10

  Revised date: 2015-05-14

  Online published: 2015-05-28

Supported by

National Natural Science Foundation of China (51175427, 51135007); Fund of the State Key Laboratory of Metal Extrusion and Forging Equipment Technology (China National Heavy Machinery Research Institute Co.,Ltd.) (2011MEFETKF_03); Open Fund of the State Key Laboratory of Materials Processing and Die & Mould Technology (P2014-05); "111" Project (B08040).

Abstract

The thin-walled and ribbed conical ring is one of the key underlying components widely used in aerospace industry. Being difficult to precision forming of cross-section of ring due to lack filling of groove profile is the bottleneck problem for this complex profiled ring rolling process. In this work, the key factors influencing the filling behavior, namely the feed amount per revolution, the radii of the main roll and idle roll are discussed. And taking a thin-walled and ribbed conical ring rolling process for TC4 titanium alloy as object, An FE model achieving close-loop control of idle roll with constant feed amount per revolution is established using VUAMP subroutine under ABAQUS environment. Then the influence rules of the feed amount per revolution and the radii of the main roll and idle roll on the filling quality, described by filling ratio and deformation and its uniformity at entrance of the groove profile, are disclosed by comprehensive simulations. The results show that: the filling ratio first increases and then decreases with the increase of feed amount per revolution, indicating that there is an optimum feed amount per revolution best beneficial to filling the groove profile; the deformation at the entrance of the groove profile is small and its distribution is uniform thus beneficial to avoiding the crack defect of that region with increasing feed amount per revolution; it is beneficial to filling the groove profile when decreasing the main roll's radius or increasing the idle roll's radius.

Cite this article

GUO Lianggang , YANG He , DI Weijia , CHEN Fulong , ZHU Shuai . Filling rules in thin-walled and ribbed conical ring rolling for TC4 titanium alloy[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(8) : 2798 -2806 . DOI: 10.7527/S1000-6893.2015.0150

References

[1] Allwood J M, Tekkaya A E, Stanistreet T F. The development of ring rolling technology[J]. Steel Research International, 2005, 76(2-3): 111-120.
[2] Allwood J M, Tekkaya A E, Stanistreet T F. The development of ring rolling technology-Part 2: Investigation of process behaviour and production equipment[J]. Steel Research International, 2005, 76(7): 491-507.
[3] He S L, Ma B J, Ding S Q, et al. The rolling technology of titanium and its alloy ring[J]. Titanium Industry Progress, 2006, 23(4): 27-30 (in Chinese). 何书林, 马宝军, 丁珊奇, 等. 钛及钛合金环材轧制技术[J]. 钛工业进展, 2006, 23(4): 27-30.
[4] Zhang D Z, Zhu F, Yang Z, et al. Manufacturing process of large-scale rings made of titanium alloy Ti-4Al-0.005B[J]. Titanium Industry Progress, 2003, 20(6): 26-27 (in Chinese). 张德昭, 朱峰, 杨昭, 等. Ti-4Al-0.005B钛合金大型环件的研制[J]. 钛工业进展, 2003, 20(6): 26-27.
[5] Yeom J T, Kim J H, Park N K, et al. Ring-rolling design for a large-scale ring product of Ti-6Al-4V alloy[J]. Journal of Materials Processing Technology, 2007, 187-188: 747-751.
[6] Neminathan P V, Velpari M S, Rao S R A, et al. Development of ring forgings in Ti-6Al-4V alloy for aero-engine applications[J]. Transactions of Indian Institute of Metals, 2008, 61(5): 355-361.
[7] Giorleo L, Ceretti E, Giardini C. Energy consumption reduction in ring rolling processes: A FEM analysis[J]. International Journal of Mechanical Sciences, 2013, 74: 55-64.
[8] Zhou G, Hua L, Qian D S. 3D coupled thermo-mechanical FE analysis of roll size effects on the radial-axial ring rolling process[J]. Computational Materials Science, 2011, 50: 911-924.
[9] Mamalis A G, Hawkyard J B, Johnson W. Spread and flow patterns in ring rolling[J]. International Journal of Mechanical Sciences, 1976, 18(1): 11-16.
[10] Lee K H, Ko D C, Kim D H, et al. Design method for intermediate roll in multi-stage profile ring rolling process: The case for excavator idler rim[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(3): 503-512.
[11] Guo L G, Chen J H, Yang H, et al. Response rules of strain and temperature fields to roll sizes during hot rolling process of TC4 titanium alloy conical ring[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1463-1473 (in Chinese). 郭良刚, 陈建华, 杨合, 等. TC4钛合金锥形环热辗轧应变及温度场对轧辊尺寸的响应规律[J]. 航空学报, 2013, 34(6): 1463-1473.
[12] Ma Y W, Wang Z H, Liu D, et al. Optimization of rotational speed of main roll in profiled ring rolling of GH4169 alloy[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1555-1562 (in Chinese). 马义伟, 王志宏, 刘东, 等. GH4169合金异形环件轧制过程的最优主辊转速[J]. 航空学报, 2011, 32(8): 1555-1562.
[13] Hua L, Qian D S, Pan L B. Deformation behaviors and conditions in L-section profile cold ring rolling[J]. Journal of Materials Processing Technology, 2009, 209(11): 5087-5096.
[14] Kim K H, Suk H G, Huh M Y. Development of the profile ring rolling process for large slewing rings of alloy steels[J]. Journal of Materials Processing Technology, 2007, 187-188: 730-733.
[15] Tiedemann I, Hirt G, Kopp R, et al. Material flow determination for radial flexible profile ring rolling[J]. Production Engineering, 2007, 1(3): 227-232.
[16] Li L Y, Yang H, Guo L G, et al. Research on interactive influences of parameters on T-shaped cold ring rolling by 3D-FE numerical simulation[J]. Journal of Mechanical Science and Technology, 2007, 21(10): 1541-1547.
[17] Guo L G, Yang H, Zhan M. Research on plastic deformation behaviour in cold ring rolling by FEM numerical simulation[J]. Modelling and Simulation in Material Science and Engineering, 2005, 13(7): 1029-1046.
[18] Li L Y. Study on the key problems in profiled cold ring rolling process[D]. Xi'an: Northwestern Polytechnical University, 2009 (in Chinese). 李兰云. 异形环件冷辗扩成形过程中的关键问题研究[D]. 西安: 西北工业大学, 2009.
[19] Hua L, Zuo Z J, Lan J, et al. Control method design for feed rate of idle roller in cold ring rolling[J]. China Mechanical Engineering, 2006, 17(9): 953-957 (in Chinese). 华林, 左治江, 兰箭, 等. 环件冷辗扩芯辊进给速度规范设计[J]. 中国机械工程, 2006, 17(9): 953-957.
[20] Hua L, Huang X G, Zhu C D. Theory and technology of ring rolling[M]. Beijing: Mechanical Industry Press, 2001: 7-9 (in Chinese). 华林, 黄兴高, 朱春东. 环件轧制理论和技术[M]. 北京: 机械工业出版社, 2001: 7-9.
[21] Wang M, Yang H, Sun Z C, et al. Analysis of mechanical and thermal behaviors in hot rolling of large rings of titanium alloy using 3D dynamic explicit FEM[J]. Journal of Materials Processing Technology, 2009, 209(7): 3384-3395.
[22] Zhu S, Yang H, Guo L G, et al. Research on the effects of coordinate deformation on radial-axial ring rolling process by FE simulation based on in-process control[J]. International Journal of Advanced Manufacturing Technology, 2014, 72(1-4): 57-68.

Outlines

/