Solid Mechanics and Vehicle Conceptual Design

New concepts and trends in development of thermal protection design and analysis technology

  • YANG Qiang ,
  • XIE Weihua ,
  • PENG Zujun ,
  • MENG Songhe ,
  • DU Shanyi
Expand
  • Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China

Received date: 2014-09-17

  Revised date: 2015-05-18

  Online published: 2015-05-28

Supported by

National Natural Science Foundation of China (11272107, 10902030, 91216301)

Abstract

Thermal protection material and structure is one of the key technologies enabling near space hypersonic flights. For the past few years, new design and analysis methods have constantly emerged. This paper will focus on these new concepts and technologies, and a survey of literature reveals that: design of thermal protection materials has been developed according to ab initio method on atomic or molecular scale to meet specific needs, and active protection technology with environment management is on the course; thermal protection structures are not only expected to be capable of thermal protection and load bearing, but also multifunctional and diversified by new thermal protection mechanism and concepts; more attention has been paid to multi-scale multi-physics non-deterministic methods under complex real service conditions in thermal protection structure analysis approaches. These new concepts and technologies will constantly drive innovations and revolutions in thermal protection technology.

Cite this article

YANG Qiang , XIE Weihua , PENG Zujun , MENG Songhe , DU Shanyi . New concepts and trends in development of thermal protection design and analysis technology[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(9) : 2981 -2991 . DOI: 10.7527/S1000-6893.2015.0137

References

[1] Nieto A, Kumar A, Lahiri D, et al. Oxidation behavior of graphene nanoplatelet reinforced tantalum carbide composites in high temperature plasma flow[J]. Carbon, 2014, 67(2): 398-408.
[2] Zhang H C, Ben X, Li Y, et al. Heat transfer characteristics of an innovative thermal protection system based on photonic crystals[J]. Heat Transfer Engineering, 2014, 35(6-8): 583-588.
[3] Lawson J W, Daw M S, Squire T H, et al. Multiscale modeling of grain boundaries in ZrB2: Structure, energetics, and thermal resistance: ARC-E-DAA-TN4936[R]. Moffett Field, CA: NASA Ames Research Center, 2012.
[4] Marshall D, Cox B, Kroll P, et al. National Hypersonic Science Center for Materials and Structures, AFOSR: FA9550-09-1-0477[R]. Thousand Oaks, CA: Teledyne Scientific Company, 2014.
[5] Sun L, Kwon P. ZrW2O8/ZrO2 composites by in situ synthesis of ZrO2+WO3: Processing, coefficient of thermal expansion, and theoretical model prediction[J]. Materials Science and Engineering: A, 2009, 527(1): 93-97.
[6] Bechel V T, Safriet S, Brown J M, et al. Bismaleimide/preceramic polymer blends for hybrid material transition regions. Part 1: Processing and characterization[J]. High Performance Polymers, 2013, 25(4): 363-367.
[7] Martinez O, Sankar B, Haftka R, et al. Two-dimensional orthotropic plate analysis for an integral thermal protection system[J]. AIAA Journal, 2012, 50(2): 387-398.
[8] Villanueva D, Haftka R T, Sankar B V. Including the effect of a future test and redesign in reliability calculations[J]. AIAA Journal, 2011, 49(12): 2760-2769.
[9] Daryabeigi K, Splinter S, Knutson J. Characterization of structurally integrated TPS for hypersonic vehicles[C]//Fundamental Aeronautics 2008 Annual Meeting. Hampton, VA: NASA Langley Research Center, 2008.
[10] Daryabeigi K, Branch C. Thermal properties for accurate thermal modeling[C]//2011 Thermal and Fluids Analysis Workshop. Hampton, VA: NASA Langley Research Center, 2011.
[11] Ravishankar B, Sankar B V, Haftka R T. Uncertainty analysis of integrated thermal protection system with rigid insulation bars, AIAA-2011-1767[R]. Reston: AIAA, 2011.
[12] Pittman J L, Koudelka J M, Wright M J, et al. Hypersonics project overview[C]//Fundamental Aeronautics Program 2011 Annual Meeting. Hampton, VA: NASA Langley Research Center, 2011.
[13] Brewer A R. Edgewise compression testing of STIPS-0, NASA/CR-2011-217161[R]. Hampton, VA: Analytical Services and Materials, Inc., 2011.
[14] Glass D E, Belvin H. Airframe technology development for next generation launch vehicles[J]. Space Technology, 2005, 25(3): 163-178.
[15] Qian H, Kucernak A R, Greenhalgh E S, et al. Multifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric[J]. ACS Applied Materials & Interfaces, 2013, 5(13):6113-6122.
[16] Ochoa O O. Functionally graded multifunctional hybrid composites for extreme environments[R]. Austin, TX: Texas A & M University, 2010.
[17] Steeves C A, Wadley H N G, Miles R B, et al. A magnetohydrodynamic power panel for space reentry vehicles[J]. Journal of Applied Mechanics, 2007, 74(1): 57-64.
[18] Gülhan A, Esser B, Koch U, et al. Experimental verification of heat-flux mitigation by electromagnetic fields in partially-ionized-argon flows[J]. Journal of Spacecraft and Rockets, 2009, 46(2): 274-283.
[19] Han X Y, Wang J. Effect of Mach number on thermoelectric performance of SiC ceramics nose-tip for supersonic vehicles[J]. Applied Thermal Engineering, 2014, 62(1): 141-147.
[20] Kanouté P, Boso D P, Chaboche J L, et al. Multiscale methods for composites: A review[J]. Archives of Computational Methods in Engineering, 2009, 16(1): 31-75.
[21] Yu W, Tang T. Variational asymptotic method for unit cell homogenization of periodically heterogeneous materials[J]. International Journal of Solids and Structures, 2007, 44(11): 3738-3755.
[22] Belytschko T, Song J H. Coarse-graining of multiscale crack propagation[J]. International Journal for Numerical Methods in Engineering, 2010, 81(5): 537-563.
[23] Mayes J S, Hansen A C. Composite laminate failure analysis using multicontinuum theory[J]. Composites Science and Technology, 2004, 64(3): 379-394.
[24] Bednarcyk B A, Arnold S M. A multiscale, nonlinear, modeling framework enabling the design and analysis of composite materials and structures, NASA/TM-2012-217244[R]. Washington, D.C.: NASA Glenn Research Center, 2012.
[25] Abraham F F, Broughton J Q, Bernstein N, et al. Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture[J]. Europhysics Letters, 1998, 44(6): 783.
[26] Meng S H, Jin H, Wang G L, et al. Research advances on surface catalytic properties of thermal protection materials[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 287-302. 孟松鹤, 金华, 王国林, 等. 热防护材料表面催化特性研究进展[J]. 航空学报, 2014, 35(2): 287-302.
[27] Chen Y K, Gökçen T. Effect of nonequilibrium surface thermochemistry in simulation of carbon-based ablators[J].Journal of Spacecraft and Rockets, 2013, 50(5): 917-926.
[28] Whitcomb J. Analysis of textile composite structures subjected to high temperature oxidizing environment, AFOSR: FA9550-07-1-0207[R]. Austin, TX: Texas A & M University, 2010.
[29] Tabiei A, Sockalingam S. Multiphysics coupled fluid/thermal/structural simulation for hypersonic reentry vehicles[J]. Journal of Aerospace Engineering, 2011, 25(2): 273-281.
[30] Tzong G, Jacobs R, Liguore S. Air vehicle integration and technology research (AVIATR) task order 0015: Predictive capability for hypersonic structural response and life prediction, Phase 1—Identification of knowledge gaps, Volume 1: Nonproprietary Version, FA8650-08-D-3857-0015[R]. Chicago, CA: The Boeing Company, 2010.
[31] Sun J, Zhang G, Vlahopoulos N, et al. Multi-disciplinary design optimization under uncertainty for thermal protection system applications, AIAA-2006-7002[R]. Reston: AIAA, 2006.
[32] Crespo L G, Kenny S P, Giesy D P. The NASA Langley multidisciplinary uncertainty quantification challenge, AIAA-2014-1347[R]. Reston: AIAA, 2014.
[33] Liang C, Mahadevan S. Bayesian framework for multidisciplinary uncertainty quantification and optimization[C]//The 16th AIAA Non-Deterministic Approaches Conference. Reston: AIAA, 2014.
[34] Chen Y K, Squire T, Laub B, et al. Monte Carlo analysis for spacecraft thermal protection system design, AIAA-2006-2951[R]. Reston: AIAA, 2006.
[35] Abdi F, Castillo T. Design of X-37 orbital vehicle[C]//International SAMPE Symposium and Exhibition. Covina, CA: The Society for the Advancement of Material and Process Engineering, 2003: 2294-2305.
[36] Glaessgen E H, Stargel D. The digital twin paradigm for future NASA and US Air Force vehicles, AIAA-2012-1818[R]. Reston: AIAA, 2012.
[37] Savino R, Fumo M D S, Marino G, et al. Aerothermal analysis of an advanced hot structure for hypersonic flight tests[C]//Materials Research Society Proceedings. Cambridge: Cambridge University Press, 2004, 851: NN11. 5.
[38] Bale H A, Haboub A, MacDowell A A, et al. Real-time quantitative imaging of failure events in materials under load at temperatures above 1 600 ℃[J]. Nature Materials, 2013, 12(1): 40-46.
[39] Cox B, Bale H, Begley M, et al. Stochastic virtual tests for high-temperature ceramic matrix composites[J]. Annual Review of Materials Research, 2014, 44: 479-529.
[40] Lyons J S, Liu J, Sutton M A. High-temperature deformation measurements using digital-image correlation[J]. Experimental Mechanics, 1996, 36(1): 64-70.
[41] Novak M D, Zok F W. High-temperature materials testing with full-field strain measurement: Experimental design and practice[J]. Review of Scientific Instruments, 2011, 82(11): 115101.

Outlines

/