Material Engineering and Mechanical Manufacturing

Effects of anodic oxide film thickness on surface characterization and adhesive strength of TB8 titanium alloy

  • YU Yongshui ,
  • XIE Lansheng ,
  • CHEN Minghe ,
  • OUYANG Jindong ,
  • ZHOU Xiwen
Expand
  • 1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Jiangxi Hongdu Aviation Industry Group Company Ltd, Nanchang 330024, China;
    3. Jiangxi Hongdu Aviation Industry Co. Ltd, Nanchang 330024, China

Received date: 2015-04-09

  Revised date: 2015-05-06

  Online published: 2015-05-25

Supported by

Major Science and Technology Projects in Jiangxi Province-The Advanced Helicopter Key Technology Program (20114ABE02100103103)

Abstract

The TB8 titanium alloy is anodized in the sodium tartrate electrolyte to investigate the effects of anodic oxide film thickness on the surface characterization and adhesive strength between the anodic oxide nanostructures and the epoxy resin. SEM, XRD and EDS are used to evaluate the morphology and crystalline structure of the anodic oxide films. The wettability and roughness of the anodic oxide films are measured using a contact angle meter and a digital video microscope. The correlation between the adhesive strength, surface morphology, phase composition, roughness and wettability of the anodic oxide film of TB8 titanium alloy is investigated. The results show that an anodic oxide film about 1-4 μm thick is formed on the surface after anodic oxide in the sodium tartrate electrolyte at the voltage of 1-30 V for 15 min. The anodic oxide film, which is mainly composed by rutile TiO2 and anatase TiO2, has a micro-and nano-porous rough structures and the wettability of water increases with the increase of the anodic oxide film thinkness. The maximum shear strength (19.6 MPa) is obtained when the thickness of the anodic oxide film is about 3 μm, which is improved by 88.5%, and the water contact angle is 43.2°, decreased by 56.1%; the surface roughness is 2.14 μm, improved by 137.8%.

Cite this article

YU Yongshui , XIE Lansheng , CHEN Minghe , OUYANG Jindong , ZHOU Xiwen . Effects of anodic oxide film thickness on surface characterization and adhesive strength of TB8 titanium alloy[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(4) : 1393 -1400 . DOI: 10.7527/S1000-6893.2015.0126

References

[1] 董天祥, 杨春晟, 李帆, 等. 国内航空金属材料成分分析技术现状及发展[J]. 材料工程, 2002, 12(3):3-5. DONG T X, YANG C S, LI F, et al. Development and actuality of composition analysis for aeronautical metal materials in China[J]. Journal of Materials Engineering, 2002, 12(3):3-5(in Chinese).
[2] 黄旭, 朱知寿, 王红红. 先进航空钛合金材料与应用[M]. 北京:国防工业出版社, 2012:6-23. HUANG X, ZHU Z S, WANG H H. Advanced aeronautical titanium alloys and applications[M]. Beijing:National Defence Industry Press, 2012:6-23(in Chinese).
[3] CORTÉS P, CANTWELL W J. The prediction of tensile failure in titanium-based thermoplastic fibre-metal laminates[J]. Composites Science Technology, 2006, 66(13):2306-2316.
[4] JOHNSON W S, HAMMOND M W. Crack growth behavior of internal titanium plies of a fiber metal laminate[J]. Composites Part A:Applied Science and Manufacturing, 2008, 39(11):1705-1715.
[5] 朱明明, 李敏, 武清, 等. 温度条件对碳纤维上浆剂与双马树脂反应及其复合材料界面粘结的影响[J]. 航空学报, 2014, 35(9):2624-2631. ZHU M M, LI M, WU Q, et al. Effect of temperature on reactions of carbon fiber sizing agent with bismaleimide and Their composite interfacial adhesion[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2624-2631(in Chinese).
[6] 曲春艳, 李琳, 王德志. 钛合金胶接表面处理研究[J]. 材料工程, 2010, 20(12):82-85. QU C Y, LI L, WANG D Z. Study on surface treatment of titanium alloy for adhesive bonding[J]. Journal of Materials Engineering, 2010, 20(12):82-85(in Chinese).
[7] PROLONGO S G, ROSARIO G, UREÑA A. Study of the effect of substrate roughness on adhesive joints by SEM image analysis[J]. Journal of Adhesion Science and Technology, 2006, 20(5):457-470.
[8] BRACK N, RIDER A N. The influence of mechanical and chemical treatments on the environmental resistance of epoxy adhesive bonds to titanium[J]. International Journal of Adhesion and Adhesives, 2014, 48:20-27.
[9] KIM Y W. Surface modification of Ti dental implants by grit-blasting and micro-arc oxidation[J]. Materials and Manufacturing Processes, 2010, 25(5):307-310.
[10] MINE A, MUNCK J D, CARDOSO M V, et al. Dentin-smear remains at self-etch adhesive interface[J]. Dental Materials, 2014, 30(10):1147-1153.
[11] HIEDA J, NⅡNOMI M, NAKAI M, et al. Adhesive strength of medical polymer on anodic oxide nanostructures fabricated on biomedical β-type titanium alloy[J]. Materials Science and Engineering:C, 2014, 36(1):244-251.
[12] HE P, CHEN K, YU B, et al. Surface microstructures and epoxy bonded shear strength of Ti6Al4V alloy anodized at various temperatures[J]. Composites Science and Technology, 2013, 82(18):15-22.
[13] XIONG J Y, WANG X J, LI Y C, et al. Interfacial chemistry and adhesion between titanium dioxide nanotube layers and titanium substrates[J]. Journal of Physical Chemistry:C, 2011, 115(11):4768-4772.
[14] MATYKINA E, GARCIA I, DAMBORENEA J J, et al. Comparative determination of TiO2 surface free energies for adhesive bonding application[J]. International Journal of Adhesion and Adhesives, 2011, 31(8):832-840.
[15] MERTENS T, GAMMEL F J, KOLB M, et al. Investigation of surface pre-treatments for the structural bonding of titanium[J]. International Journal of Adhesion and Adhesives, 2012, 34:46-54.
[16] YAZDI S S, ASHRAFIZADEH F, HAKIMIZAD A. Improving the grain structure and adhesion of Ni-P coating to 3004 aluminum substrate by nanostructured anodicfilm interlayer[J]. Surface and Coatings Technology, 2013, 232:561-566.
[17] 高淑春, 李玉海, 张路宁, 等. TA2纯钛H3PO4溶液阳极氧化着色膜的表征和电化学分析[J]. 稀有金属材料与工程, 2012, 41(6):1049-1054. GAO S C, LI Y H, ZHANG L N, et al. Characterization and electrochemistry analysis of colored films on the surface of TA2 pure titanium by anodic oxidation using phosphate acid[J]. Rare Metal Materials and Engineering, 2012, 41(6):1049-1054(in Chinese).
[18] 刘建华, 吴量, 李松梅, 等. 草酸钠体系中Ti-10V-2Fe-3Al钛合金阳极氧化膜的制备与表征[J]. 航空学报, 2010, 31(4):852-856. LIU J H, WU L, LI S M, et al. Preparation and characterization of anodic oxide film on titanium alloy Ti-10V-2Fe-3Al in sodium oxalate electrolyte[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(4):852-856(in Chinese).
[19] POUILLEAU J, DEVILLIERS D, GARRIDO F, et al. Structure and composition of passive titanium oxide films[J]. Materials Science and Engineering:B, 1997, 47(3):235-243.
[20] SHAHZAD M, CHAUSSUMIER M, CHIERAGATTI R, et al. Surface characterization and influence of anodizing process on fatigue life of Al 7050 alloy[J]. Materials and Design, 2011, 32(6):3328-3335.
[21] 刘建华, 杨康, 于美, 等. 酒石酸钠体系中TC18钛合金阳极氧化膜的制备、表征与疲劳性能[J]. 航空学报, 2014, 35(2):902-910. LIU J H, YANG K, YU M, et al. Preparation, characterization and fatigue performance of anodic oxide film on titanium alloy TC18 in sodium tartrate electrolyte[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):902-910(in Chinese).
[22] 徐飞, 潘蕾, 白云瑞, 等. 钛表面阳极氧化处理对TA2/聚醚醚酮(PEEK)粘结性能的影响[J]. 航空学报, 2014, 35(6):1724-1732. XU F, PAN L, BAI Y R, et al. The effects of titanium surface anodization on the adhesive bonding strength between TA2/PEEK[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6):1724-1732(in Chinese).
[23] HE P, CHEN K, YU B, et al. Surface microstructures and epoxy bonded shear strength of Ti6Al4V alloy anodized at various temperatures[J]. Composites Science and Technology, 2013, 82(18):15-22.
[24] HIEDA J, NⅡNOMI M, NAKAI M, et al. Adhesive strength of medical polymer on anodic oxide nanostructures fabricated on biomedical β-type titanium alloy[J]. Materials Science and Engineering:C, 2014, 36(1):244-251.

Outlines

/