Fluid Mechanics and Flight Mechanics

Numerical prediction of optimal height of roughness strip for artificial transition on swept wings

  • TIAN Yongqiang ,
  • ZHANG Zhengke ,
  • QU Ke ,
  • ZHAI Qi
Expand
  • 1. National Key Laboratory of Science and Technology on Aerodynamical Design and Research, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Department of Civil Engineering, City College, The City University of New York, New York NY 10031, USA

Received date: 2015-03-03

  Revised date: 2015-05-08

  Online published: 2015-05-25

Supported by

National Natural Science Foundation of China(JC-201103);Aeronautical Science Foundation of China(2013ZD53057)

Abstract

A brief introduction to γ-Reθ transition model based on local variables is presented. The model is applied in predicting the transition on swept wings and in determining the optimal height of the roughness strip in artificial transition and the atmospheric flight Reynolds number which can be simulated by the optimal roughness height. In order to validate the ability of γ-Reθ model in predicting transition on sweep wings, boundary layer transition on ONERA M6 wing and DLR-F4 standard model wing are predicted, Reynolds-averaged Navier-Stokes(RANS) equations are solved via structured mesh and finite volume method and skin friction coefficient distributions are acquired, thus the transition locations are acquired, which coincide well with the experimental results, conclusions can be made that the predicting results by this model are reliable. Then roughness trips are fixed on DLR-F4 standard model wing surface and transition locations are acquired via the same method, the results reveal that at Mach number of 0.785 and Reynolds number of 3×106, the optimal height of the roughness strip for artificial transition on DLR-F4 standard model wing is 0.11 mm. The simulating ability of artificial transition to atmospheric flight transition is validated by moving the transition location upward via increasing the Reynolds number, results of which indicate that models with the optimal roughness strip height can simulate atmospheric flight free transition at high Reynolds number.

Cite this article

TIAN Yongqiang , ZHANG Zhengke , QU Ke , ZHAI Qi . Numerical prediction of optimal height of roughness strip for artificial transition on swept wings[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(2) : 461 -474 . DOI: 10.7527/S1000-6893.2015.0129

References

[1] 范洁川. 风洞试验手册[M]. 北京:航空工业出版社, 2002:313-314. FAN J C. Wind tunnel experiment handbook[M]. Beijing:Aviation Industry Press, 2002:313-314(in Chinese).
[2] 恽起麟. 实验空气动力学[M]. 北京:国防工业出版社, 1991:13-15. YUN Q L. Experimental aerodynamics[M]. Beijing:National Defense Industrial Press, 1991:13-15(in Chinese).
[3] 恽起麟. 风洞实验数据的误差与修正[M]. 北京:国防工业出版社, 1996:276-277. YUN Q L. Wind tunnel experiment data errors and correction[M]. Beijing:National Defense Industrial Press, 1996:276-277(in Chinese).
[4] 程厚梅. 风洞实验干扰与修正[M]. 北京:国防工业出版社, 2003:292-299. CHENG H M. Wind tunnel experiment interference and correction[M]. Beijing:National Defense Industrial Press, 2003:292-299(in Chinese).
[5] LANGTRY R B. A correlation-based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart:Stuttgart University, 2006.
[6] MAYLE R E. The role of laminar-turbulent transition in gas turbine engines[J]. ASME Journal of Turbomachinery, 1991, 113(4):509-537.
[7] KLEBANOFF P S, TIDSTROM K D, SARGENT L M. The three-dimensional nature of boundary layer instability[J]. Journal of Fluid Mechanics, 1962, 12(1):1-24.
[8] LEE C B, WU J C. Transition in wall-bonded flows[J]. Applied Mechanics Reviews, 2008, 61(030802):1-21.
[9] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[10] MALKIEL E, MAYLE R E. Transition in a separation bubble[J]. Journal of Turbomachinery, 1996, 118(4):752-759.
[11] 杨永, 左岁寒, 李喜乐, 等. 基于升华法实验研究后掠翼三维边界层的转捩[J]. 实验流体力学, 2009, 23(3):40-43. YANG Y, ZUO S H, LI X L, et al. Transition studies for the boundary layer on a swept wing based on sublimation technique[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3):40-43(in Chinese).
[12] 黄勇, 钱丰学, 于昆龙, 等. 基于柱状粗糙元的边界层人工转捩试验研究[J]. 实验流体力学, 2006, 20(3):59-62. HUANG Y, QIAN F X, YU K L, et al. Experimental investigation on boundary layer artificial transition based on transition trip disk[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(3):59-62(in Chinese).
[13] 任旭东, 赵子杰, 高超, 等. 一种新型转捩技术在跨音速风洞中的应用[J]. 实验力学, 2013, 28(3):314-319. REN X D, ZHAO Z J, GAO C, et al. Application of a new transition technology in transition wind tunnel[J]. Journal of Experimental Mechanics, 2013, 28(3):314-319(in Chinese).
[14] 赵子杰, 高超, 张正科. 新型人工转捩技术研究及试验验证[J]. 航空学报, 2015, 36(6):1830-1838. ZHAO Z J, GAO C, ZHANG Z K. Study of an innovative transition technique and its validation through wind tunnel experiments[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1830-1838(in Chinese).
[15] FEY U, EGAMI Y, ENGLER R H. High Reynolds number transition detection by means of temperature sensitive paint:AIAA-2006-0514[R]. Reston:AIAA, 2006.
[16] YORITA D, ASAI K, KLEIN C, et al. Transition detection on rotating propeller blades by means of temperature-sensitive paint:AIAA-2012-1187[R]. Reston:AIAA, 2012.
[17] CHENG T T, ZHANG Z K, QU K, et al. Numerical study of fixed artificial transition and the minimum height of roughness strip for it:AIAA-2013-3093[R]. Reston:AIAA, 2013.
[18] 成婷婷, 张正科, 屈科. 用转捩模型预测转捩及确定最佳粗糙带高度[J]. 航空计算技术, 2012, 42(5):75-79. CHENG T T, ZHANG Z K, QU K. Prediction of transition and optimal roughness height based on transition model[J]. Aeronautical Computing Technique, 2012, 42(5):75-79(in Chinese).
[19] 张玉伦, 王光学, 孟德虹, 等. γ-Reθ转捩模型的标定研究[J]. 空气动力学学报, 2011, 29(3):295-301. ZHANG Y L, WANG G X, MENG D H, et al. Calibration of γ-Reθ transition model[J]. Acta Aerodynamica Sinica, 2011, 29(3):295-301(in Chinese).
[20] STOCK H W, HAASE W. Navier-Stokes airfoil computation with eN transition prediction including transitional flow regions[J]. AIAA Journal, 2000, 38(11):2059-2066.
[21] ZHOU H, ZHAO G F. Flow stability[M]. Beijing:National Defense Industrial Press, 2004:65-67(in Chinese). 周恒, 赵耕夫. 流动稳定性[M]. 北京:国防工业出版社, 2004:65-67.
[22] HERBERT T. Parabolized stability equations[J]. Annual Review of Fluid Mechanics, 1997, 29(1):245-283.
[23] MALIK M R, LI F. Transition studies for swept wing using PSE:AIAA-1993-0077[R]. Reston:AIAA, 1993.
[24] HAYNES T S, READ H L, SARIC W S. CFD validation issues in transition modeling:AIAA-1996-2051[R]. Reston:AIAA, 1996.
[25] LIU Z, ZHAO W, LIU C, et al. Direct numerical simulation of flow transition in high-speed boundary layers around airfoils:AIAA-1997-0753[R]. Reston:AIAA, 1997.
[26] FASEL H F, MEITZ H L, BACHMAN C R. DNS and LES for investigating transition and transtion control:AIAA-1997-1820[R]. Reston:AIAA, 1997.
[27] ANDREAS K. Automatic transition prediction and application to 3D wing configurations:AIAA-2006-0914[R]. Reston:AIAA, 2006.
[28] CORNELIA G, ANDREAS K. Correlation-based transition transport modeling for three-dimensitional aerodynamic configurations[J]. Journal of Aircraft, 2013, 50(5):1533-1539.
[29] NASA. NPARC alliance validation archive[EB/OL].[2014-12-17]. http://www.grc.nasa.gov/WWW/wind/valid/m6wing/m6wing.html.
[30] VASSBERG J C, BUNING P G, RUMSEY C L. Drag prediction for DLR-F4 wing/body using OVERFLOW and CFL3D on overset mesh:AIAA-2002-0840[R]. Reston:AIAA, 2002.
[31] FEY U, EGAMI Y, JANSEN U, et al. Transition detection by temperature sensitive paint at cryogenic temperatures in the European transonic wind tunnel(ETW)[C]//20th International Congress on Instrumentation in Aerospace Simulation Facilities, ICIASF 2003. 2003:77-88.

Outlines

/