ACTA AERONAUTICAET ASTRONAUTICA SINICA >
A control method of flying wing UAV for penetration of microburst
Received date: 2014-05-14
Revised date: 2014-09-11
Online published: 2015-05-15
Supported by
National Defense Pre-research Foundation of China (513250201)
Microburst is the most dangerous low-level wind shear. The control lawof flying wing UAV requires rapid response and good robustness for penetration of microburst during taking off and landing. Based on the low pitch control effectiveness at low airspeed and the high elevator additional lift of high aspect ratio flying wing UAV, a complex control scheme which integrates elevator additional lift control with aerodynamic control is proposed. Nonlinear command distribution strategy based on output error for reference is developed, and command distribution strategy based on angle of attack protection is designed. The wind disturbance and the model uncertaintiesare taken as uncertain factors. Nonlinear control law of flying wing UAV based on active disturbance rejection control (ADRC) theory is designed for estimating and compensating the wind disturbance and the model uncertainties. The simulated results show that the control method combines complex control with ADRC, makes flight path unit step response rapidly, and shortens its rise time by 64%, estimates and compensates the wind disturbance, maintains altitude loss under 2 m, protects angle of attack and keeps it under 5.5 °. Therefore, this control method provides a reference way for and finally keeping flying wing UAV safe during penetration of microburst.
WANG Yanxiong , ZHU Xiaoping , ZHOU Zhou , XU Mingxing , FENG Yin'an . A control method of flying wing UAV for penetration of microburst[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(5) : 1673 -1683 . DOI: 10.7527/S1000-6893.2014.0256
[1] Zhang Z J, Wang L, Wang L X, et al. Three-axis stability characteristics of flying wing with high aspect ratio[J]. Systems Engineering Theory & Practice, 2012, 32(5): 1129-1135 (in Chinese). 张子军, 王磊, 王立新, 等. 大展弦比飞翼布局飞机的三轴稳定特性[J]. 系统工程理论与实践, 2012, 32(5): 1129-1135.
[2] Wang L, Wang L X, Jia Z R. Control allocation method for combat flying wing with multiple control surfaces[J]. Acta Aeronautica et Astronautica Sinca, 2011, 32(4): 571-579 (in Chinese). 王磊, 王立新, 贾重任. 多操纵面飞翼布局作战飞机的控制分配方法[J]. 航空学报, 2011, 32(4): 571-579.
[3] Gloria S, Ulf R. Yaw control of a tailless aircraft configuration[J]. Journal of Aircraft, 2010, 47(5): 1807-1810.
[4] Wang R, Zhu X P, Zhou Z, et al. Design of fixed structure H2/H∞ flight control law by genetic algorithm and LMI[J]. Acta Aeronautica et Astronautica Sinca, 2008, 29(4): 1031-1036 (in Chinese). 王睿, 祝小平, 周洲, 等. 利用遗传算法和LMI设计固定结构H2/H∞飞行控制律[J]. 航空学报, 2008, 29(4): 1031-1036.
[5] Gao J, Wang L X, Zhou K. Gust load alleviation control of aircraft with large ratio flying wing configuration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(9): 1076-1079 (in Chinese). 高洁, 王立新, 周堃. 大展弦比飞翼构型飞机阵风载荷缓解控制[J]. 北京航空航天大学学报, 2008, 34(9): 1076-1079.
[6] Zhang L G, Wang Y. Safety-concerned longitudinal control strategy for takeoff phase of UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(10): 1183-1187 (in Chinese). 张利刚, 王勇. 轮式起降无人机安全起飞纵向控制[J]. 北京航空航天大学学报, 2009, 35(10): 1183-1187.
[7] Zhou N, Liu X, Yin J H. Intelligent control of airplane under microburst windshear[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2002, 34(5): 479-483 (in Chinese). 周娜, 刘昶, 尹江辉. 飞机穿越微下冲暴流风切变的智能控制[J]. 南京航空航天大学学报, 2002, 34(5): 479-483.
[8] Sandeep S M, Robert F S. Optimal recovery from microburst wind shear[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(6): 1010-1017.
[9] Chen Y, Jin C J. Ground-speed/air-speed control of airplane during penetration of windshear[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(6): 621-624 (in Chinese). 陈勇, 金长江. 飞机穿越风切变时的地速/空速控制[J]. 北京航空航天大学学报, 2002, 28(6): 621-624.
[10] Melvin R, James E S, Kamran R. A microburst response and recovery scheme using advanced flight envelope protection, AIAA-2012-4444 [R]. Reston: AIAA, 2012.
[11] Rokhsaz K, Steck J E, Chandramohan R, et al. Response of an advanced flight control system to microburst encounters, SAE-2005-01-3420[R]. Grapevine: Aerotech Congress & Exhibition, 2005.
[12] Sadat-Hoseini H, Fazelzadeh S A, Rasti A, et al. Final approach and flare control of a flexible aircraft in crosswind landings[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(4): 946-957.
[13] Zhou Z, Zhu X P, Liu Q G. Variable structure control for aircraft in windshear field[J]. Journal of Northwestern Polytechnical University, 1997, 15(4): 558-562 (in Chinese). 周洲, 祝小平, 刘千刚. 飞机穿越微下击暴流的航迹变结构控制[J]. 西北工业大学学报, 1997, 15(4): 558-562.
[14] Shi J P, Zhang W G. A redistributed pseudoinverse algorithm based on null-space for control allocation[J]. Computer Simulation, 2009, 26(5): 88-91 (in Chinese). 史静平, 章卫国. 一种基于零空间的再分配伪逆算法[J]. 计算机仿真, 2009, 26(5): 88-91.
[15] Shi J P. Research on control allocation methods in the advanced aircraft[D]. Xi'an: Northwestern Polytechnical University, 2009 (in Chinese). 史静平. 先进飞机多操纵面控制分配方法研究[D]. 西安: 西北工业大学, 2009.
[16] Wayne C D. Constrained control allocation[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(4): 717-725.
[17] Xu S H, Sheng Z P, Gu W J. Nonlinear distribution strategy for compound control over flying saucer[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(1): 8-11 (in Chinese). 徐胜红, 盛忠培, 顾文锦. 碟形飞行器复合控制的非线性分配策略研究[J]. 弹箭与制导学报, 2006, 26(1): 8-11.
[18] Xiao Y L, Jin C J. Flight theory of atmospheric disturbance[M]. Beijing: National Defense Industry Press, 1993: 81-84 (in Chinese). 肖业伦, 金长江. 大气扰动中的飞行原理[M]. 北京: 国防工业出版社, 1993: 81-84.
[19] Du Y L. Study of nonlinear adaptive attitude and trajectory control for near space vehicles[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010 (in Chinese). 都延丽. 近空间飞行器姿态与轨迹的非线性自适应控制研究[D]. 南京: 南京航空航天大学, 2010.
[20] Huang Y, Han J Q. Analysis and design for second order nonlinear continuous extended states observer[J]. Chinese Science Bulletin, 2000, 45(13): 1373-1379 (in Chinese). 黄一, 韩京清. 非线性连续二阶扩张状态观测器的分析与设计[J]. 科学通报, 2000, 45(13): 1373-1379.
[21] Gao Z X, Gu H B. Real-time simulation of large aircraft flying through microburst wind field[J]. Chinese Journal of Aeronautics, 2009, 22(5): 459-466.
[22] Lin L L, Yan F. Nested DE based parameter estimation for multiple vortex ring microburst model[J]. Measurement, 2013, 46(3): 1231-1236.
/
〈 | 〉 |