Fluid Mechanics and Flight Mechanics

A method for aeroelastic load redistribution of very flexible wing with a high-aspect-ratio

  • DUAN Jingbo ,
  • ZHOU Zhou ,
  • WANG Wei ,
  • JIANG Tao ,
  • WANG Rui
Expand
  • 1. College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Department of UAV Engineering, Ordnance Engineering College, Shijiazhuang 050003, China

Received date: 2015-03-27

  Revised date: 2015-05-08

  Online published: 2015-05-14

Supported by

National Natural Science Foundation of China(11202162);China Postdoctoral Science Foundation(2014M560803)

Abstract

Very flexible wing of the aircraft with a high-aspect-ratio under goes large bend and twist deformation, which leads to a distinct redistribution of the aeroelastic load. A new method is developed for the aeroelastic load redistribution of the flexible wing based on a new beam element with only two degree of freedoms(two general bend angles). By using the beam element, the complex geometrically nonlinear computation for the bend deformation of the wing is converted to be a simple linear problem. Meanwhile, the twist deformation of the wing can be linearly solved in the local coordinate system, avoiding the complex geometrically nonlinear computation in the global coordinate system. In a word, the present method simplifies the aeroelastic load redistribution of the flexible wing through transforming a geometrically nonlinear problem to be a linear one. The results are in a very good agreement with the analytical solutions and indicate that the present method is accurate and efficient for engineering practice.

Cite this article

DUAN Jingbo , ZHOU Zhou , WANG Wei , JIANG Tao , WANG Rui . A method for aeroelastic load redistribution of very flexible wing with a high-aspect-ratio[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(3) : 799 -809 . DOI: 10.7527/S1000-6893.2015.0127

References

[1] RODDEN W, JOHNSON E. MSC/Nastran aeroelastic analysis user's guide[M]. New York:the MacNeal-Schwendler Corporation, 1994:1-4.
[2] PATIL M J, HODGES D H, CESNIK C E S. Nonlinear aeroelastic and flight dynamics of hight-altitude long-edurance aircraft:AIAA-1999-1470[R]. Reston:AIAA, 1999.
[3] NOLL T E, BROWN J M, PEREZ-DAVIS M E, et al. Investigation of the helios prototype aircraft mishap[R]. Washington, D.C.:NASA, 2004.
[4] PATIL M J, HODGES D H. On the importance of aerodynamic and structural nonlinearities in aeroelastic behavior of high-aspect-ratio wings:AIAA-2000-1448[R]. Reston:AIAA, 2000.
[5] PATIL M J, HODGES D H. Limit cycle oscillations in high-aspect-ratio wings:AIAA-1999-1464[R]. Reston:AIAA, 1999.
[6] TANG D M, DOWELL E H. Comments on the onera stall aerodynamic model and its impact on aeroelastic stability[J]. Journal of Fluids & Structures, 1996, 10(4):353-366.
[7] XIE C C, LENG J Z, YANG C. Geometrical nonlinear aeroelastic stability analysis of a composite high-aspect-ratio wing[C]//International Conference on Engineering Dynamics, 2007.
[8] 谢长川, 吴志刚, 杨超. 大展弦比柔性机翼的气动弹性分析[J]. 北京航空航天大学学报, 2003, 29(12):1087-1091. XIE C C, WU Z G, YANG C. Aeroelastic analysis of flexible large aspect ratio wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(12):1087-1091(in Chinese).
[9] 杨超, 王立波, 谢长川, 等. 大变形飞机配平与飞行载荷分析方法[J]. 中国科学, 2012, 42(10):1137-1147. YANG C, WANG L B, XIE C C, et al. Aeroelastic trim and flight loads analysis of flexible aircraft with large deformations[J]. Sci China Tech Sci, 2012, 42(10):1137-1147(in Chinese).
[10] 谢长川, 杨超. 大展弦比飞机几何非线性气动弹性稳定性的线性化方法[J]. 中国科学, 2011, 41(3):385-393. XIE C C, YANG C. Linearization method of nonlinear aeroelastic stability for complete aircraft with high-aspect-ratio wings[J]. Sci China Tech Sci, 2011, 41(3):385-393(in Chinese).
[11] 王伟, 周洲, 祝小平, 等. 考虑几何非线性效应的大柔性太阳能无人机静气动弹性分析[J]. 西北工业大学学报, 2014, 32(4):499-505. WANG W, ZHOU Z, ZHU X P, et al. Static aeroelastic analysis of a very flexible solar powered UAV with Geometrical nonlinear effect considered[J]. Jounal of Northwestern Polytechnical University, 2014, 32(4):499-505(in Chinese).
[12] 王伟, 周洲, 祝小平, 等. 几何大变形太阳能无人机非线性气动弹性稳定性研究[J]. 西北工业大学学报, 2015, 33(1):1-7. WANG W, ZHOU Z, ZHU X P, et al. Exploring aeroelastic stability of very flexible solar powered UAV with geometrically large deformation[J]. Jounal of Northwestern Polytechnical University, 2015, 33(1):1-7(in Chinese).
[13] PALACIOS R, CESNIK C S. Static nonlinear aeroelasticity of flexible slender wings in compressible flow:AIAA-2005-1945[R]. Reston:AIAA, 2005.
[14] 张健, 向锦武. 侧向随动力作用大展弦比柔性机翼的稳定性[J]. 航空学报, 2010, 31(11):2115-2124. ZHANG J, XIANG J W. Stability of high-aspect-ratio flexible wings loaded by a lateral follower force[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11):2115-2124(in Chinese).
[15] 张健. 柔性飞机非线性气动弹性与飞行动力学耦合建模与仿真[D]. 北京:北京航空航天大学, 2010. ZHANG J. Modeling and simulation of coupled aeroelasticity adm flight dynamics for flexible aircraft[D]. Beijing:Beihang University, 2010(in Chinese).
[16] ZHANG J, XIANG J W. Nonlinear aeroelastic response of high-aspect-ratio flexible wings[J]. Chinese Journal of Aeronautics, 2009, 22(4):355-363.
[17] 王勖成, 邵敏. 有限单元法基本原理和数值方法[M]. 北京:清华大学出版社, 1997:30-32. WANG X C, SHAO M. Fundamental principle and numerical method of the finite element method[M]. Beijing:Tsinghua University Press, 1997:30-32(in Chinese).
[18] 赵永辉. 气动弹性力学与控制[M]. 北京:科学出版社, 2006:21-25. ZHAO Y H. Aeroelastic mechanics and control[M]. Beijing:Science Press, 2006:21-25(in Chinese).
[19] KIRK F, BOB C. Pathfinder solar-powered aircraft flight performance:AIAA-1998-4446[R]. Reston:AIAA,1998.
[20] YOUNGBLOOD J W, TALAY T A. Solar-powered airplane design for long-endurance, high-altitude flight:AIAA-1982-0811[R]. Reston:AIAA, 1982.

Outlines

/