ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Method of time-to-go estimation for head-pursuit interception mode
Received date: 2014-05-04
Revised date: 2015-04-20
Online published: 2015-05-12
Supported by
National High-tech Research and Development Program of China
The estimation method suiting head-on and head-pursuit interception mode is the necessary condition of accurate time-to-go (TGO) calculation, and the method of TGO estimation is appropriate for head-on engagement but not for head-pursuit engagement. Therefore, the methods of TGO estimation for the interception of nonmaneuvering and maneuvering targets are proposed in head-pursuit interception mode. Through transforming the linear guidance equation, the flight arc of interceptor is solved; according to the predicted position of impact point, the analytic expressions of TGO estimation are obtained. The idea of TGO method has wide versatility and can be used in TGO estimation of trajectory shaping guidance. Simulations are carried out with classical method for verifying its validity based on retro-proportional-navigation (RPN) and augment RPN (ARPN). Compared with the classical method, it is demonstrated that the proposed TGO estimation method has high accuracy and is able to improve the guidance performance effectively for missile.
LI Yuan , YAN Liang , ZHAO Jiguang , CHEN Jingpeng . Method of time-to-go estimation for head-pursuit interception mode[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(9) : 3082 -3091 . DOI: 10.7527/S1000-6893.2015.0107
[1] Adler F P. Missile guidance by three-dimensional proportional navigation[J]. Journal of Applied Physics, 1956, 27(5): 500-507.
[2] Yang C D, Yang C C. Analytical solution of three-dimensional realistic true proportional navigation[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(3): 569-577.
[3] Riggs T L, Jr. Linear optimal guidance for short range air-to-air missiles[C]//Proceedings of National Aerospace and Electronics Conference NAECON'79. Piscataway, NJ: IEEE Press, 1979: 757-764.
[4] Jeon I, Lee J, Tahk M. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology, 2006, 14(2): 260-266.
[5] Dhananjay N, Ghose D. Accurate time-to-go estimation for proportional navigation guidance[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(4): 1378-1383.
[6] Tahk M J, Ryoo C K, Cho H. Recursive time-to-go estimation for homing guidance missiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1): 13-24.
[7] Zhang Y A, Ma G X. Time-to-go estimation algorithm for the proportional navigation guidance law with a large lead angle[J]. Journal of Harbin Engineering University, 2013,34(11): 1409-1414 (in Chinese). 张友安, 马国欣. 大前置角下比例导引律的剩余时间估计算法[J]. 哈尔滨工程大学学报, 2013, 34(11): 1409-1414.
[8] Ma G X, Zhang Y A, Li J. Guidance law with multiple constraints and seeker field-of -view limit and the time-to-go estimation[J]. Systems Engineering and Electronics, 2014, 36(8): 1609-1613 (in Chinese). 马国欣, 张友安, 李君. 带导引头视场限制的多约束导引律及剩余时间估计[J]. 系统工程与电子技术, 2014, 36(8): 1609-1613.
[9] Liu P, Sun R, Li W. Homing guidance law with falling angle and flying time control[J]. Journal of Harbin Institute of Technology, 2014, 21(1): 55-61.
[10] Ryoo C K, Cho H, Tahk M J. Optimal guidance laws with terminal impact angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4): 724-732.
[11] Kim T H, Lee C H, Tahk M J. Time-to-go polynomial guidance with trajectory modulation for observability enhancement[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 55-73.
[12] Prasanna H M, Ghose D. Retro-proportional-navigation: A new guidance law for interception of high-speed targets[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(2): 377-386.
[13] Shima T. Intercept-angle guidance[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(2): 484-492.
[14] Tal S, Golan O M. Head pursuit guidance[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1437-1444.
[15] Zarchan P. Tactical and strategic missile guidance[M]. 37rd ed. Reston: AIAA, 2002: 15.
[16] Siouris G M. Missile guidance and control systems[M]. Berlin: Springer, 2004: 195-196.
[17] Ben-Asher J Z, Farber N, Levinson S. New proportional navigation law for ground-to-air systems[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(5): 822-825.
[18] Byung S K, Jang G L, Hyung S H. Biased PNG law for impact with angular constraint[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1): 277-288.
[19] Akhil G, Ghose D. Biased PN based impact angle constrained guidance using a nonlinear engagement model[C]//Proceedings of 2012 American Control Conference (ACC).Piscataway, NJ: IEEE Press, 2012: 950-955.
[20] Yuan P, Chern J. Ideal proportional navigation[J]. Journal of Guidance, Control, and Dynamics, 1992, 15(5): 1161-1165.
/
〈 | 〉 |