Fluid Mechanics and Flight Mechanics

Aerodynamic design optimization of supersonic airfoils

  • CAO Changqiang ,
  • CAI Jinsheng ,
  • DUAN Yanhui
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Computational Aerodynamics Institute, China Aerodynamics Research and Development Centre, Mianyang 621000, China

Received date: 2015-02-06

  Revised date: 2015-05-04

  Online published: 2015-05-05

Abstract

Firstly, the aerodynamic performance of supersonic airfoils with different geometric shapes and relative thickness is compared and analyzed. Secondly, design optimization is implemented for the polygonal airfoils of 3.5% relative thickness by combining genetic algorithm (GA) and rapid aerodynamic engineering algorithm. The design optimization process makes the polygonal airfoil approach to be a quadrilateral in shape with the maximum thickness location moving to about 60% of the chord. As the angle of attack or Mach number increases, the lower surface will become thinner, the upper surface will become thicker and the maximum thickness location will move backward slightly. Furthermore, for the biconvex airfoil of 4% relative thickness, a two-step design optimization method is used. In the first step, class and shape transformation (CST) based on B-spline basis function is used combined with wavelet decomposition to enhance the local control and fairing abilities. A surrogate model based on proper orthogonal decomposition (POD) is chosen to reduce the computational workload. The second step optimization employs the steepest decent algorithm (SDA) based on the Navier-Stokes equations to correct the errors caused by POD method and wavelet decomposition in the first step optimization. The optimized airfoil approximates to be a quadrilateral in shape, with the maximum thickness location moving to 60%-65% of the chord and lift-to-drag ratio increasing by 7%.

Cite this article

CAO Changqiang , CAI Jinsheng , DUAN Yanhui . Aerodynamic design optimization of supersonic airfoils[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(12) : 3774 -3784 . DOI: 10.7527/S1000-6893.2015.0118

References

[1] Ruffin S M, Gupta A, Marshall D. Supersonic channel airfoils for reduced drag[J]. AIAA Journal, 2000, 38(3):480-486.
[2] Lobbia M A, Suzuki K. Multidisciplinary design optimization of hypersonic, AIAA-2014-2359[R]. Reston:AIAA, 2014.
[3] Lobbia M A, Suzuki K. Experimental investigation of a Mach 3.5 waverider designed using computational fluid dynamics[J]. AIAA Journal, 2015, 53(6):1590-1601.
[4] Shapiro A H. The dynamics and thermodynamics of compressible fluid flow[M]. New York:The Ronald Press Company, 1954:745-770.
[5] Yan C, Xie L, Li Y X, et al. Optimum method and inverse method for aerodynamic design of airfoil[J]. Acta Aerodynamic Sinica, 1999, 17(1):60-67(in Chinese).阎超,谢磊,李云晓,等.翼型的气动最优化设计方法和反设计方法[J].空气动力学学报, 1999, 17(1):60-67.
[6] Liu H, Zhu Z Q, Yu R X, et al. Optimization design of adaptive airfoil's aerodynamic shape[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(4):289-293(in Chinese).刘航,朱自强,吁日新,等.自适应翼型的气动外形优化设计[J].航空学报, 2002, 23(4):289-293.
[7] Duan Y H. Research on methods of aerodynamic shape optimization for hypersonic vehicles[D]. Xi'an:Northwestern Polytechnical University, 2013(in Chinese).段焰辉.高超声速飞行器气动外形优化设计方法研究[D].西安:西北工业大学, 2013.
[8] Hao J A, Jiang C W, Gao Z X, et al. Aerodynamic engineering prediction methods for winged reentry vehicles[J]. Chinese Space Science and Technology, 2014(3):38-45(in Chinese).郝佳傲,蒋崇文,高振勋,等.有翼再入飞行器的超/高超声速气动力工程方法[J].中国空间科学技术, 2014(3):38-45.
[9] Gao Q, Zhang W M, Chen Y W. Rapid calculation of aerodynamic characteristics of new supersonic and hypersonic aircrafts with inlets[J]. Journal of Astronautics, 2008, 29(2):494-498(in Chinese).高清,张卫民,陈英文.新一代超/高超声速带进气道飞行器气动力特性快速计算[J].宇航学报, 2008, 29(2):494-498.
[10] Liu C Z, Duan Y H, Cai J S. Aerodynamic shape optimization based on multi-block class and shape transformation[J]. Journal of Astronautics, 2014, 35(2):137-143(in Chinese).刘传振,段焰辉,蔡晋生.气动外形优化中的分块类别形状函数法研究[J].宇航学报, 2014, 35(2):137-143.
[11] Holmes P, Lumley J, Berkooz G. Turbulence, coherent structures, dynamical systems and symmetry[M]. Cambridge:Cambridge University Press, 1996:86-113.
[12] Sirovich L, Kirby M. Turbulence and the dynamics of coherent structures. I:Coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3):561-571.
[13] Everson R, Sirovich L. Karhunen-Loeve procedure for gappy data[J]. Journal of the Optical Society of America A, 1995, 12(8):1657-1664.
[14] Bui-Thanh T, Damodaran M, Willcox K. Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition[J]. AIAA Journal, 2004, 42(8):1505-1516.
[15] Duan Y H, Cai J S, Li Y Z. Gappy proper orthogonal decomposition-based two-step optimization for airfoil design[J]. AIAA Journal, 2012, 50(4):968-971.
[16] Bai J Q, Qiu Y S, Hua J. Improved airfoil inverse design method based on Gappy POD[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):762-771(in Chinese).白俊强,邱亚松,华俊.改进型Gappy POD翼型反设计方法[J].航空学报, 2013, 34(4):762-771.
[17] Wang X, Cai J S, Qu K, et al. Airfoil optimization based on improved CST parametric method and transition model[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):449-461(in Chinese).王迅,蔡晋生,屈崑,等.基于改进CST参数化方法和转捩模型的翼型优化设计研究[J].航空学报, 2015:36(2):449-461.
[18] Zhu F, Qin N. Intuitive class/shape function parameterization for airfoils[J]. AIAA Journal, 2014, 52(1):17-25.
[19] Kulfan B M, Bussoletti J E. "Fundamental" parametric geometry representation for aircraft component shapes, AIAA-2006-6948[R]. Reston:AIAA, 2006.
[20] Kulfan B M. Recent extensions and applications of the "CST" universal parametric geometry representation method, AIAA-2007-7709[R]. Reston:AIAA, 2007.
[21] Kulfan B M. A universal parametric geometry representation method-"CST", AIAA-2007-0062[R]. Reston:AIAA, 2007.
[22] Guan X H, Li Z K, Song B F. A study on CST aerodynamic shape parameterization method[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4):625-633(in Chinese).关晓辉,李占科,宋笔锋. CST气动外形参数化方法研究[J].航空学报, 2012, 33(4):625-633.
[23] Straathof M H, van Tooren M J L. Extension to the class-shape-transformation method based on B-splines[J]. AIAA Journal, 2011, 49(4):780-790.
[24] Finkelstein A, Salesin D H. Multiresolution curves[C]//Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, 1994.
[25] Mu G W, Zang T, Zhao G. Wavelet-based local fairing algorithm for B-spline curves[J]. Journal of Engineering Graphics, 2006, 27(2):84-89(in Chinese).穆国旺,臧婷,赵罡.基于小波的B样条曲线局部光顺算法[J].工程图学学报, 2006, 27(2):84-89.
[26] Piegl L, Tiller W. The nurbs book[M]. Zhao G, Mu G W, Wang L Z, translated. Beijing:Tsinghua University Press, 2010:34-36(in Chinese). Piegl L, Tiller W.非均匀有理B样条[M].赵罡,穆国旺,王拉柱,译.北京:清华大学出版社, 2010:34-36.

Outlines

/