ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Flow characteristics of an inward turning inlet with circular outlet
Received date: 2015-01-28
Revised date: 2015-04-19
Online published: 2015-05-05
Supported by
Open Fund of Science and Technology on Scramjet Laboratory(STSKFKT2014002)
The flow characteristics of an inward turning inlet are numerically studied. The results show that at design condition, the secondary flow near the wall is induced by the cowl shock and the streamwise vortex is generated in isolator, which will cause the flow with low velocity and low total pressure to accumulate. The distribution of the aerodynamic parameters at the isolator outlet is even, which will weaken the back-pressure capacity of inlet. With angle of attack, the compression shock departs the leading edge of cowl lip and the shock wave structure changes. The middle part of the shock wave presents quasi-two-dimensional feature in the span-wise. The shock wave is weak on the two sides of compression surface and the expansion waves occur in local zone. The streamwise vortex presents in the compression section without viscosity with angle of attack, and this streamwise vortex will enhance the transfer of the flow with high total pressure from the core flow region to the wall, so the evenness of flow at the outlet of isolator is improved under viscosity.
WANG Weixing , GUO Rongwei . Flow characteristics of an inward turning inlet with circular outlet[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(2) : 533 -544 . DOI: 10.7527/S1000-6893.2015.0108
[1] TAN H J, GUO R W. Experimental study of the unstable-unstarted condition of a hypersonic inlet at Mach 6[J]. Journal of Propulsion and Power, 2007, 23(4):783-788.
[2] BARBER T J, HIETT D, FASTENBERG S. CFD modeling of the hypersonic inlet starting problem:AIAA-2006-123[R]. Reston:AIAA, 2006.
[3] BOON S, HILLIER R. Mach 6 hypersonic inlet flow analysis at incidence:AIAA-2006-3036[R]. Reston:AIAA, 2006.
[4] 袁化成, 郭荣伟. 矩形截面高超声速进气道气动设计及试验验证[J]. 南京航空航天大学学报, 2009, 41(4):423-428. YUAN H C, GUO R W. Design and experimental verification of hypersonic inlet with rectangular section[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2009, 41(4):423-428(in Chinese).
[5] BILLIG F S. SCRAM-A supersonic combustion ramjet missile:AIAA-1993-2329[R]. Reston:AIAA, 1993.
[6] VAN WIE D, MOLDER S. Applications of Busemann inlet designs for flight at hypersonic speeds:AIAA-1992-1210[R]. Reston:AIAA, 1992.
[7] MALO F J, GAITONDE D V. Numerical investigation of an innovative inward turning inlet:AIAA-2005-4871[R]. Reston:AIAA, 2005.
[8] MALO F J, GAITONDE D V. Analysis of an innovative inward turning inlet using an Air-JP8 combustion mixture at Mach 7:AIAA-2006-3041[R]. Reston:AIAA, 2006.
[9] SMART M K, TREXLER C A. Mach 4 performance of a fixed-geometry hypersonic inlet with rectangular-to-ellipitical shape transition:AIAA-2007-0026[R]. Reston:AIAA, 2007.
[10] SMART M K, WHITE J A. Computational investigation of the performance and back-pressure limits of a hypersonic inlet:AIAA-2002-0508[R]. Reston:AIAA, 2002.
[11] SMART M K. Experimental testing of a hypersonic inlet with rectangular-to-elliptical shape transition:AIAA-1999-0085[R]. Reston:AIAA, 1999.
[12] YOU Y C, LIANG D W, HUANG G P. Cross section controllable hypersonic inlet design using streamline tracing and osculating axisymmetric concepts:AIAA-2007-5379[R]. Reston:AIAA, 2007.
[13] YOU Y C, LIANG D W, GUO R W. Numerical research of three-dimensional sections controllable internal waverider hypersonic inlet:AIAA-2008-4708[R]. Reston:AIAA, 2008.
[14] YOU Y C, LIANG D W, GUO R W, et al. High enthalpy wind tunnel tests of three-dimensional section controllable internal waverider hypersonic inlet:AIAA-2009-0009[R]. Reston:AIAA, 2009.
[15] MATTHEWS A J, JONES T V. Design and test of a modular waverider hypersonic intake:AIAA-2005-2279[R]. Reston:AIAA, 2005.
[16] WALKER S H, RODGERS F, ESPOSITA A L. Hypersonic collaborative Australia/United States experiment(HYCAUSE):AIAA-2005-3254[R]. Reston:AIAA, 2005.
[17] WALKER S H, RODGERS F. Falcon hypersonic technology overview:AIAA-2005-3253[R]. Reston:AIAA, 2005.
[18] 孙波, 张堃元, 金志光, 等. 流线追踪Busemann进气道设计参数的选择[J]. 推进技术, 2007, 28(1):55-59. SUN B, ZHANG K Y, JIN Z G, et al. Selection of design parameters for stream traced hypersonic Busemann inlets[J]. Journal of Propulsion Technology, 2007, 28(1):55-59(in Chinese).
[19] 孙波, 张堃元. Busemann进气道风洞试验及数值研究[J]. 推进技术, 2006, 27(1):58-60. SUN B, ZHNAG K Y. Experimental investigation and numerical simulation[J]. Journal of Propulsion Technology, 2006, 27(1):58-60(in Chinese).
[20] 孙波, 张堃元, 王成鹏, 等. Busemann进气道无粘流场数值分析[J]. 推进技术, 2005, 26(3):242-247. SUN B, ZHANG K Y, WANG C P, et al. Inviscid CFD analysics of hypersonic Busemann inlet[J]. Journal of Propulsion Technology, 2005, 26(3):242-247(in Chinese).
[21] 尤延铖, 梁德旺. 内乘波式进气道内收缩基本流场研究[J]. 空气动力学学报, 2008, 26(2):203-207. YOU Y C, LIANG D W. Investigation of internal compression flowfield for internal waverider-derived inlet[J]. Acta Aerodynamic Sinica, 2008, 26(2):203-207(in chinese).
[22] 贺旭照, 乐嘉陵, 宋文燕, 等. 基于轴对称喷管的三维内收缩进气道的是设计与初步评估[J]. 推进技术, 2010, 31(2):147-152. HE X Z, LE J L, SONG W Y, et al. 3D inward turning inlet design basing on axisymmetric nozzle and its preliminary assessment[J]. Journal of Propulsion Technology, 2010, 31(2):147-152(in Chinese).
[23] 南向军, 张堃元, 金志光. 基于反正切曲线压升规律设计高超内收缩进气道[J]. 航空动力学报, 2011, 26(11):2571-2577. NAN X J, ZHANG K Y, JIN Z G. Design of hypersonic inward turning inlets with basic flowfield using arc tangent curve law of pressure rise[J]. Journal of Aerospace Power, 2011, 26(11):2571-2577(in Chinese).
[24] 南向军, 张堃元, 金志光, 等. 矩形转圆形高超声速内收缩进气道数值及试验研究[J]. 航空学报, 2011, 32(6):988-996. NAN X J, ZHANG K Y, JIN Z G, et al. Numerical and experimental investigation of hypersonic inward turning inlets with rectangular to circular shape transition[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):988-996(in Chinese).
[25] 李永洲, 张堃元, 南向军. 基于马赫数分布规律可控概念的高超声速内收缩进气道设计[J]. 航空动力学报, 2012, 27(11):2484-2491. LI Y Z, ZHANG K Y, NAN X J. Design of hypersonic inward turning inlets base on concept of controllable Mach number distribution[J]. Journal of Aerospace Power, 2012, 27(11):2484-2491(in Chinese).
[26] DRAYNA T W, NOMPELIS I, CANDLER G V. Hypersonic inward turning inlets:design and optimization:AIAA-2006-297[R]. Reston:AIAA, 2006.
/
〈 | 〉 |