Electronics and Control

Simulation experiment of electromagnetic pulse radiation of corona discharge under high-altitude low pressure

  • LIU Hao ,
  • LIU Shanghe ,
  • CAO Hefei ,
  • HU Xiaofeng ,
  • FAN Gaohui ,
  • ZHANG Yue
Expand
  • 1. Research Institute of Electrostatic and Electromagnetic Protection, Mechanical Engineering College, Shijiazhuang 050003, China;
    2. School of Electrical and Electronics Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050003, China

Received date: 2015-01-09

  Revised date: 2015-05-04

  Online published: 2015-05-05

Supported by

National Natural Science Foundation of China (61172035); China Postdoctoral Science Foundation (2014T71006)

Abstract

To study the electromagnetic pulse radiation of corona discharge on the surface of the aircraft under low pressure, a simulation experiment was conducted using the sharp-point conductor. The expression of radiation E-field amplitude under different pressures was achieved, meanwhile the variation of electromagnetic pulse radiation of corona discharge with voltage polarity, pressure and test distance was summed up based on the theory of gas discharge and electromagnetic field. The present work shows the following characteristics. The time-domain waveform of corona discharge radiation E-field shows damped oscillatory and the duration is about 600 ns. The direction of first pulse varies with different polarities. The radiation E-field is mainly concentrated on the polarization direction which is the same as the discharging needle. The spectrum is within 500 MHz and the peaks appear stably at 35 MHz and 170 MHz. In the range of 4 kPa to 30 kPa, the discharge electromagnetic pulse radiation E-field strengthens with the pressure decreasing, which attenuates with increasing test distance. The conclusions may provide a reference for the research of corona discharge electromagnetic pulse radiation.

Cite this article

LIU Hao , LIU Shanghe , CAO Hefei , HU Xiaofeng , FAN Gaohui , ZHANG Yue . Simulation experiment of electromagnetic pulse radiation of corona discharge under high-altitude low pressure[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(12) : 3930 -3937 . DOI: 10.7527/S1000-6893.2015.0120

References

[1] Illingworth A J, Marsh S J. Static charging of aircraft by collisions with ice crystals[J]. Revue De Physique Appliquée, 1986, 23(21):803-808.
[2] Jones J J. Electric charge acquired by airplanes penetrating thunderstorms[J]. Journal of Geophysical Research, 1993, 95(D10):16589-16600.
[3] Zheng H Z, Hu X F, Du Z H, et al. Primary analysis and simulation test on precipitation static of aerial vehicle surface material[J]. High Voltage Engineering, 2011, 37(10):2612-2616(in Chinese).郑会志,胡小峰,杜照恒,等.飞行器表面材料沉积静电成因分析及模拟试验[J].高电压技术, 2011, 37(10):2612-2616.
[4] Du Z H, Liu S H, Wei M, et al. Modeling and simulation analysis of aerial vehicle charging and discharging process[J]. High Voltage Engineering, 2014, 40(9):2806-2812(in Chinese).杜照恒,刘尚合,魏明,等.飞行器静电起电与放电模型及仿真分析[J].高电压技术, 2014, 40(9):2806-2812.
[5] Liu S H, Wei G H, Liu Z C, et al. Theory and protection of electrostatic[M]. Beijing:Weapon Industry Press, 1999:180-182(in Chinese).刘尚合,魏光辉,刘直承,等.静电理论与防护[M].北京:兵器工业出版社, 1999:180-182.
[6] Liu S H, Zhu L, Wei M, et al. Research on long-range detection technology for corona discharge radiation signal[J]. High Voltage Engineering, 2013, 39(20):2845-2851(in Chinese).刘尚合,朱利,魏明,等.电晕放电辐射信号远距离探测技术研究[J].高电压技术, 2013, 39(20):2845-2851.
[7] Lin X Y, Chen S X, Xie Q J, et al. Experimental research on radiation characteristics of corona discharge hardware[J]. High Voltage Apparatus, 2004, 40(6):407-410(in Chinese).林晓宇,陈仕修,谢齐家,等.金具电晕辐射特性的实验研究[J].高压电器, 2004, 40(6):407-410.
[8] Chen S X, Sun Y, Xie H. Characteristics of electromagnetic wave radiated from corona discharge[C]//IEEE International Symposium on Electromagnetic Compatibility. Piscataway, NJ:IEEE Press, 2001:1279-1282.
[9] Chen S X, Shen Y M, Wu Y L, et al. Equivalent model of electromagnetic wave radiated from corona discharge between needle-plat e electrodes in loop circuit[J]. High Voltage Engineering, 2002, 28(120):9-11(in Chinese).陈仕修,沈远茂,吴远利,等.针-板电极电晕放电辐射电磁波的等效模型[J].高电压技术, 2002, 28(120):9-11.
[10] Chen Y C, Li C R, Huang X Q. Study of corona discharge pattern on high voltage transmission lines for inspecting faulty porcelain insulators[J]. IEEE Transactions on Power Delivery, 2008, 23(4):945-952.
[11] Hu X F, Liu S H, Wang L, et al. Calculation and experiment o radiation fields from tip corona discharge[J]. High Voltage Engineering, 2012, 38(9):2266-2272(in Chinese).胡小锋,刘尚合,王雷,等.尖端导体电晕放电辐射场的计算与实验[J].高电压技术, 2012, 38(9):2266-2272.
[12] Xiao D P, He W, Xie P J, et al. Study on corona discharge characteristic of high voltage transmission line and calculation of its electromagnetic radiation field[J]. Power System Technology, 2007, 31(21):52-55(in Chinese).肖冬萍,何为,谢鹏举,等.高压输电线路电晕放电特性及其电磁辐射场计算[J].电网技术, 2007, 31(21):52-55.
[13] Lei X Y, Liu S H, Wang L, et al. Numerical modeling and simulation of radiation field of electrostatic discharge electromagnetic pulse[J]. High Voltage Engineering, 2010, 36(11):2749-2753(in Chinese).雷晓勇,刘尚合,王雷,等.静电放电电磁脉冲辐射场数值建模与仿真[J].高电压技术, 2010, 36(11):2749-2753.
[14] Ouyang J T, Zhang Z L, Peng Z L, et al. Electromagnetic radiation from negative corona discharge in air[J]. High Voltage Engineering, 2012, 38(9):2237-2241(in Chinese).欧阳吉庭,张子亮,彭祖林,等.空气针尖负电晕放电的特征辐射谱[J].高电压技术, 2012, 38(9):2237-2241.
[15] Zhu L, Liu S H, Zhang Y, et al. High sensitivity detection scheme for corona discharge radiation signal[J]. High Power Laser and Particle Beams, 2014, 26(3):033201-1-6(in Chinese).朱利,刘尚合,张悦,等.高灵敏度电晕放电辐射信号探测方案[J].强激光与粒子束, 2014, 26(3):033201-1-6.
[16] Fan G H, Liu S H, Hu X F, et al. Remote detection technology of the corona discharge based on narrow-band testing od radiation fields[J]. Chinese Journal of Radio Science, 2014, 29(5):833-840(in Chinese).樊高辉,刘尚合,胡小锋,等.基于辐射场窄带测试的电晕放电远距离探测技术研究[J].电波科学学报, 2014, 29(5):833-840.
[17] Gao H, Weng N Q, Sun G, et al. Distribution feature of meteorology parameter of upper air of different areas in china[J]. Journal of Atmospheric and Environmental Optics, 2012, 7(2):101-107(in Chinese).高慧,翁宁泉,孙刚,等.我国不同区域高空温度和相对湿度的分布特征[J].大气与环境光学学报, 2012, 7(2):101-107.
[18] Kozyrev A V, Kozhevnikov V Y, Kostyrya I D, et al. Radiation from a diffuse corona discharge in atmospheric pressure air[J]. Atmospheric and Oceanic Optics, 2012, 25(2):176-183.
[19] Yousef A S, Mohamed M S. A model for simulating corona in the electromagnetic transients on transmission lines[J]. Computers and Electrical Engineering, 2003, 29(2):653-665.
[20] Anton G T, Peng Z Q, Amelia R B. Transient excitation of a straight thin-wire segment:A new look at an old problem[J]. IEEE Transactions on Antennas and Propagations, 1992, 40(10):1132-1146.
[21] Lai K X, Phung B T, Blackburn T R, et al. Separation of corona noise from on-line partial discharge monitoring of power cables[C]//International Conference on Condition Monitoring and Diagnosis, 2008:1270-1274.
[22] Tran T N, Golosnoy I O, Lewin P L, et al. Numerical modeling of negative discharges in air with experimental validation[J]. Journal of Physics D:Applied Physics, 2011, 44(1):015203.
[23] Loeb L B. The mechanism of the trichel pulses of short time duration in air[J]. Physical Review, 1952, 86(2):256-527.
[24] Hui J F, Guan Z C, Wang L M, et al. Research on variation of positive DC corona characteristics with air pressure and humidity[J]. Proceedings of the CSEE, 2007, 27(33):53-58(in Chinese).惠建峰,关志成,王黎明,等.正直流电晕特性随气压和湿度变化的研究[J].中国电机工程学报, 2007, 27(33):53-58.
[25] Bian X M, Hui J F, Huang H K, et al. Effects of air pressure and humidity on the characteristics of negative DC corona[J]. Proceedings of the CSEE, 2010, 30(4):118-124(in Chinese).卞星明,惠建峰,黄海鲲,等.气压湿度对负直流电晕特性影响的研究[J].中国电机工程学报, 2010, 30(4):118-124.
[26] Hamou N. Modeling and simulation of the effect of pressure on the corona discharge for wire-plane configuration[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(5):1547-1553.
[27] Jian T, Rong Z, Hong B M, et al. Analysis of electromagnetic interference on DC line from parallel AC line in close proximity[J]. IEEE Transactions on Power Delivery, 2007, 22(4):2401-2408.

Outlines

/