Electronics and Control

Angular velocity depressing method of constrained and centroid biased on-orbit separation

  • JIANG Chao ,
  • WANG Zhaokui ,
  • ZHANG Yulin
Expand
  • School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

Received date: 2014-10-27

  Revised date: 2015-04-01

  Online published: 2015-04-24

Supported by

National High-tech Research and Development Program of China (2012AA120603)

Abstract

The constrained and centroid biased on-orbit separation is a special kind of on-orbit separation problems. The offset between separation force acting line and the centroid of the release platform brings separation moment and leads to angular velocity. Then both the pointing precision of small satellite and the attitude stabilization of the release platform will be disturbed by on-orbit separation. However, it is difficult to depress the disturbances in quite a short time by general fast attitude maneuver or stabilizing methods. So, a method of angular velocity depressing of the constrained and centroid biased on-orbit separation is researched. With the analysis of the separation dynamics, the feed-forward moment control method and the angular velocity offset method are presented. The calculation formulas of control parameters are derived and optimized. The influences caused by implementing factors are analyzed as well. Finally, the two angular velocity depressing methods are proved to be effective by numerical simulations, along with some suggestions in engineering application.

Cite this article

JIANG Chao , WANG Zhaokui , ZHANG Yulin . Angular velocity depressing method of constrained and centroid biased on-orbit separation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(10) : 3382 -3392 . DOI: 10.7527/S1000-6893.2015.0093

References

[1] Peter R. Design and verification of a mechanical system for magnetospheric mapping missions[C]//Proceedings of 2004 IEEE Aerospace Conference. Piscataway, NJ: IEEE Press, 2004: 7803-8155.
[2] James R, Marco A, Samuel J. Space technology 5 launch and operations, AAS 07-091[R]. Breckenridge, Colorado: American Astronautical Society, 2007.
[3] Larsson R, Berge S, Bodin P, et al. Fuel efficient relative orbit control strategies for formation flying and ren-dezvous within PRISMA[C]//Proceedings of the 29th Annual AAS Guidance and Control Conference. Breckenridge, Colorado: American Astronautical Society, 2006.
[4] Bodin P, Carlsson A, Larsson R, et al. The PRISMA formation flying mission: Overview and operational experience form the early mission phase[C]//Proceedings of the 6th International Workshop on Satellite Constellation and Formation Flying, 2010.
[5] Jiang C, Wang Z K, Zhang Y L. Study of on-orbit separation schemes for configuration initialization of fractionated spacecraft cluster flying[C]//Proceedings of the 1st IAA Conference on Dynamics and Control of Space Systems, 2012: 1436-1448.
[6] Jiang C, Wang Z K, Zhang Y L. Improved design of on-orbit separation schemes for formation initialization based on J2 perturbation[C]//Proceedings of the 2nd IAA Conference on Dynamics and Control of Space Systems, 2014.
[7] Jiang C, Wang Z K, Fan L, et al. Dynamics analysis of the constrained and centroid biased on-orbit satellite separation[J]. Flight Dynamics, 2010, 28(1): 76-79 (in Chinese). 蒋超, 王兆魁, 范丽, 等. 卫星筒式偏心在轨分离动力学分析[J]. 飞行力学, 2010, 28(1): 76-79.
[8] Shen X F, Xiao Y Z, Kang Z Y. Establishment and validation on dynamics simulation model of separation of eccentric sub-satellite[J]. Flight Dynamics, 2012, 30(3): 258-262 (in Chinese). 沈晓凤, 肖余之, 康志宇. 小卫星偏心分离动力学仿真模型的建立与验证[J]. 飞行力学, 2012, 30(3): 258-262.
[9] Gong D Z, Wu Y P, Lu X. An attempt at improving dynamic performance of star tracker by motion compensation[J]. Aerospace Control and Application, 2009, 35(6): 19-23 (in Chinese). 龚德铸, 武延鹏, 卢欣. 一种提高星敏感器动态性能的方法[J]. 空间控制技术与应用, 2009, 35(6): 19-23.
[10] Jin J, Zhang J R, Liu Z Z. Optimized design of controller parameters for large angle spacecraft attitude maneuvers[J]. Journal of Tsinghua University: Science and Technology, 2009, 49(2): 289-292 (in Chinese). 靳瑾, 张景瑞, 刘藻珍. 航天器大角度姿态快速机动控制器参数优化设计[J]. 清华大学学报: 自然科学版, 2009, 49(2): 289-292.
[11] Lei Y J, Tan S P, Liu Y W. Spacecraft control method for fast attitude maneuver and stabilization[J]. Chinese Space Science and Technology, 2010, 30(5): 48-53 (in Chinese). 雷拥军, 谈树萍, 刘一武. 一种航天器姿态快速机动及稳定控制方法[J]. 中国空间科学技术, 2010, 30(5): 48-53.
[12] Li Z H. The study on the rapid maneuver and stabilization of small satellite attitude control approaches[D]. Harbin: Harbin Institute of Technology, 2011 (in Chinese). 李紫涵. 小卫星姿态快速机动与稳定控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
[13] Wu Q. Principles of automatic control[M]. Beijing: Tsinghua University Press, 2002: 6-7 (in Chinese). 吴麒. 自动控制原理[M]. 北京: 清华大学出版社, 2002: 6-7.
[14] Dong C Y, Hua Y, Chen Y, et al. A cascade-saturation fuzzy variable structure control for spacecraft large angle attitude maneuvers[J]. Journal of Astronautics, 2006, 27(5): 974-978 (in Chinese). 董朝阳, 华莹, 陈宇, 等. 空间飞行器大角度机动递阶饱和控制律设计[J]. 宇航学报, 2006, 27(5): 974-978.
[15] Hu Z H, Huang P F, Meng Z J, et al. Integrated pose control of tethered space robot in approaching process[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11): 2635-2644 (in Chinese). 胡仄虹, 黄攀峰, 孟中杰, 等. 空间绳系机器人逼近过程的位姿一体化控制[J]. 航空学报, 2013, 34(11): 2635-2644.
[16] Mao G W, Tang J L, et al. Spacecraft propulsion system and application[M]. Xi'an: Northwestern Polytechnical University Press, 2009: 16-18 (in Chinese). 毛根旺, 唐金兰, 等. 航天器推进系统及其应用[M]. 西安: 西北工业大学出版社, 2009: 16-18.
[17] Guo Q C, Yan B Q, Mi S S. Research on kinetic vehicle attitude control based on pulse-width pulse-frequency modulation[J]. Journal of Detection & Control, 2008, 30(10): 116-119 (in Chinese). 郭清晨, 杨宝庆, 米双山. 基于PWPF的动能拦截器姿态控制方法研究[J]. 探测与控制学报, 2008, 30(10): 116-119.
[18] Duan J H, Gao X G. Design of the on-off control laws of kinetic kill vehicle's attitude and orbit control thrustors[J]. Flight Dynamics, 2010, 28(1): 57-60 (in Chinese). 端军红, 高晓光. 动能拦截器姿轨控发动机开关机控制规律设计[J]. 飞行力学, 2010, 28(1): 57-60.
[19] Liu X E. Ant colony algorithm for continuous space optimization[J]. Journal of Computer Applications, 2009, 29(10): 2744-2747 (in Chinese). 刘喜恩. 用于连续空间寻优的一种蚁群算法[J]. 计算机应用, 2009, 29(10): 2744-2747.
[20] Zhang Y D, Huang S B. On ant colony algorithm for solving multiobjective optimization problems[J]. Control and Decision, 2005, 20(2): 170-176 (in Chinese). 张勇德, 黄莎白. 多目标优化问题的蚁群算法研究[J]. 控制与决策, 2005, 20(2): 170-176.
[21] He Y H, Wang P. Calculation for the impulse of micro-detonation thruster[J]. Chinese Space Science and Technology, 2003, 8(4): 25-29 (in Chinese). 何远航, 王萍. 微爆轰推力器的冲量计算[J]. 中国空间科学技术, 2003, 8(4): 25-29.
[22] Guo X H, Dong L C, He Y H, et al. Calculation for the impulse of micro-detonation thruster[J]. Transactions of Beijing Institute of Technology, 2008, 28(5): 377-380 (in Chinese). 郭香华, 董良慈, 何远航, 等. 微爆轰推力器的冲量研究[J]. 北京理工大学学报, 2008, 28(5): 377-380.

Outlines

/