Material Engineering and Mechanical Manufacturing

Method and implementation of remanufacture and repair of aircraft engine damaged blades

  • WANG Hao ,
  • WANG Liwen ,
  • WANG Tao ,
  • DING Huapeng
Expand
  • 1. Engineering Technology Training Center, Civil Aviation University of China, Tianjin 300300, China;
    2. Ground Special Equipment Science and Research Base, Civil Aviation University of China, Tianjin 300300, China;
    3. School of Aviation Automation, Civil Aviation University of China, Tianjin 300300, China

Received date: 2015-01-28

  Revised date: 2015-04-09

  Online published: 2015-04-21

Supported by

National Natural Science Foundation of China(U1333121);Tianjin Research Program of Application Foundation and Advanced Technology(14JCQNJC05000);Ministry of Industry and Information Technology Science and Technology Major Project(2013ZX04001071);The Fundamental Research Funds for the Central Universities(3122014D12)

Abstract

Aircraft engine blades are subject to damage because they are constantly exposed to high temperature, pressure and speed. Since the technology of repairing the damaged blades has been dominated by foreign companies, domestic airlines have to invest a tremendous amount of cost and time in having damaged blades repaired. This paper is to put forward a method in an attempt to remanufacture and repair damaged blades. Firstly, we evaluate the possibility of repairing the damage by analyzing the characteristics of damaged blades. Secondly, we acquire and process the point cloud of broken blades, extract the boundary curve of the blade section, reconstruct the 3D digital models of blades and obtain the 3D object model of blade via Boolean operation. Thirdly, we repair and remanufacture the damaged blades via laser cladding and adaptive machining. Finally, we check the precision of the 3D digital model and perform an error analysis. The results turn out that the proposed 3D digital model is of relatively greater accuracy and smoothness and remanufactured blade can meet the technical requirements prescribed in the aircraft engine maintenance manual.

Cite this article

WANG Hao , WANG Liwen , WANG Tao , DING Huapeng . Method and implementation of remanufacture and repair of aircraft engine damaged blades[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(3) : 1036 -1048 . DOI: 10.7527/S1000-6893.2015.0102

References

[1] 段继豪, 史耀耀, 张军锋. 航空发动机叶片柔性抛光技术[J]. 航空学报, 2012, 33(3):573-578. DUAN J H, SHI Y Y, ZHANG J F. Flexible polishing technology for blade of aviation engine[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3):573-578(in Chinese).
[2] 赵慧慧, 张广军, 范庆. 基于焊接的多通道单层再制造熔覆组织及性能[J]. 焊接学报, 2011, 32(2):45-48. ZHAO H H, ZHANG G J, FAN Q. Microstructure and performances antes-pass single-layer weld-based remanufacturing component[J]. Transactions of the China Welding Institution, 2011, 32(2):45-48(in Chinese).
[3] 张胜, 侯金保, 李晓红. 大推力航空发动机热端部件损伤修复技术综述[C]//大型飞机关键技术高层论坛论文集. 北京:中国航空学会, 2007:1-6. ZHANG S, HOU J B, LI X H. A review on repairs of hot-end parts in high thrust aero-engines[C]//Proceedings of Key Techniques of Large Airplanes and Seminar of Chinese Aviation Academy. Beijing:Chinese Society of Aeronautics and Astronautics, 2007:1-6(in Chinese).
[4] HUANG H, GONG Z M, CHEN X Q, et al. SMART robotic system for 3D profile turbine vane airfoil repair[J]. International Journal of Advanced Manufacture Technology, 2003, 21(4):275-283.
[5] HUANG H, GONG Z M, CHEN X Q, et al. Robotic grinding and polishing for turbine-vane overhaul[J]. Journal of Materials Processing Technology, 2002, 127(2):140-145.
[6] MOHAGHEGH K, SADEGHI M H, ABDULLAH A. Reverse engineering of turbine blades based on design intent[J]. International Journal of Advanced Manufacturing Technology, 2007, 32(9-10):1009-1020.
[7] MOHAGHEGH K, MOHAMMAD H, ABDULLAH A, et al. Improvement of reverse-engineered turbine blades using construction geometry[J]. International Journal of Advanced Manufacturing Technology, 2010, 49(5-8):675-678.
[8] YILMAZ O, GINDY N, GAO J. A repair and overhaul methodology for aeroengine components[J]. Robotics and Computer-Integrated Manufacturing, 2010, 26(2):190-201.
[9] PIYA C, WILSON J M, MURUGAPPAN S. Virtual repair:Geometric reconstruction for remanufacturing gas turbine blades[C]//Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, 2011:1-10.
[10] 张建平. 德国MTU公司民用航空发动机高压涡轮叶片维修技术[J]. 航空制造技术, 2004(10):70-71. ZHANG J P. The maintenance technology of engine's high pressure turbine blades in German company MTU[J]. Aeronautical Manufacturing Technology, 2004(10):70-71(in Chinese).
[11] 关桥. 发动机叶片与部件修复工程中的焊接技术(上)[J]. 航空制造技术, 1993(2):2-12. GUAN Q. The welding technology of engine blades and parts repair engineering[J]. Aeronautical Manufacturing Technology, 1993(2):2-12(in Chinese).
[12] 孙护国, 霍武军. 航空发动机涡轮叶片的修理技术[J]. 航空工程与维修, 2001(6):12-14. SUN H G, HUO W J. Aeroengine turbine blade repair techniques[J]. Aviation Engineering & Maintenance, 2001(6):12-14(in Chinese).
[13] 白瑞金, 张利国. 涡轮叶片修复及其市场分析[J].航空制造技术, 2002(12):37-40. BAI R J, ZHANG L G. Repair of turbine blades and market analysis[J]. Aeronautical Manufacturing Technology, 2002(12):37-40(in Chinese).
[14] 张红影, 李启东, 李文龙. 基于MLS的航空叶片中弧线提取方法[J]. 中国机械工程, 2014, 25(7):959-964. ZHANG H Y, LI Q D, LI W L. An effective extraction method of aviation engine blade's mean camber line based on MLS method[J]. China Mechanical Engineering, 2014, 25(7):959-964(in Chinese).
[15] 李启东, 李文龙, 周莉萍. 一种曲面特征保持的航空叶片点云精简方法[J]. 机械工程学报, 2014, 25(16):2204-2212. LI Q D, LI W L, ZHOU L P. A surface feature-preserving point cloud simplification method for aviation blades[J]. Journal of Mechanical Engineering, 2014, 25(16):2204-2212(in Chinese).
[16] 彭志光. 基于改进凸包算法的叶片型面检测[D]. 武汉:华中科技大学, 2012:24-40. PENG Z G. The blade surface inspection based on the improved convex hull algorithm[D]. Wuhan:Huazhong University of Science and Technology, 2012:24-40(in Chinese).
[17] GAO J, CHEN X, YILMAAZ O, et al. An integrated adaptive repair solution for complex aerospace components through geometry reconstruction[J]. International Journal of Advanced Manufacturing Technology, 2008, 36(11-12):1170-1179.
[18] WU H D, GAO J, LI S. A review of geometric reconstruction algorithm and repairing methodologies for gas turbine components[J]. TELKOMNIKA Indonesian Journal of Electrical Engineering, 2013, 11(3):1609-1618.
[19] 于之靖, 宋四同. 基于逆向工程的航空发动机叶片数字化建模[J]. 机床与液压, 2011, 39(17):122-125. YU Z J, SONG S T. Based on the reverse engineering of digital model aircraft engine blades[J]. Machine Tool & Hydraulics, 2011, 39(17):122-125(in Chinese).
[20] 赵娜, 李亮玉, 刘杰. 飞机叶片焊接修复中的三维测量重构技术[J]. 焊接学报, 2014, 35(6):73-76. ZHAO N, LI L Y, LIU J. Based on the reverse engineering of digital model aircraft engine blades[J]. Transactions of the China Welding Institution, 2014, 35(6):73-76(in Chinese).
[21] RONG Y, XU J T, SUN Y W. A surface reconstruction strategy based on deformable template for repairing damaged turbine blades[J]. Journal of Aerospace Engineering, 2014, 228(12):2359-2369.
[22] 陶春虎, 钟培道. 航空发动机转动部件的失效与预防[M]. 北京:国防工业出版社, 2008:29-30. TAO C H, ZHONG P D. Failure analysis and prevention for rotor in aero-engine[M]. Beijing:National Defense Industry Press, 2008:29-30(in Chinese).
[23] 唐海军, 曹大树, 姚红宇. 某发动机空中停车事件的失效分析[J]. 航空学报, 2010, 31(2):285-289. TANG H J, CAO D S, YAO H Y. Failure analysis on in-flight shutdown of an aero engine[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2):285-289(in Chinese).
[24] 曹爽, 岳建平, 马文. 基于特征选择的双边滤波点云去噪算法[J]. 东南大学学报(自然科学版), 2013, 11(43):351-354. CAO S, YUE J P, MA W. Bilateral filtering denoise algorithm for point cloud based on feature selection[J]. Journal of Southeast University(Natural Science Edition), 2013, 11(43):351-354(in Chinese).
[25] 徐工, 程效军. 基于小波技术的散乱点云自适应压缩算法[J]. 同济大学学报(自然科学版), 2013, 41(11):1738-1743. XU G, CHENG X J. Adaptive reduction of scattered point clouds based on wavelet technology[J]. Journal of Tongji University(Natural Science), 2013, 41(11):1738-1743(in Chinese).
[26] WANG T, DING H P, WANG H. Virtual remanufacturing:cross-section curve reconstruction for repairing a tip-defective blade[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2015, 229(17):3141-3152.
[27] BOEING Company. CFM56-7 Boeing aircraft maintenance manual, chapter 72 engine[S]. 2010.
[28] AIRBUS Company. CFM56-5 Airbus aircraft maintenance manual, chapter 72 engine[S]. 2011.
[29] Westinghouse. AN 02B-110BE-4 J34-WE-48 aircraft engine parts manual[S]. 1949.
[30] Westinghouse. AN 02B-110BA-3 J34-WE-22 aircraft engine overhaul instructions[S]. 1949.

Outlines

/