Electronics and Control

Fault-tolerant guidance for reentry hypersonic flight vehicles based on NFTET

  • QIAN Jiasong ,
  • QI Ruiyun
Expand
  • College of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Received date: 2014-10-24

  Revised date: 2015-04-01

  Online published: 2015-04-10

Supported by

National Natural Science Foundation of China (61374116); The Fundamental Research Funds for the Central Universities; Foundation of Graduate Innovation Center in NUAA (kfjj201421)

Abstract

A fault-tolerant guidance law using the neighboring feasible trajectory existence theorem (NFTET) for the three-degree-of-freedom model of a hypersonic vehicle X-33 is designed to solve the problem of trajectory reshaping under actuator failures in reentry phase. In the nominal case, the predictor-corrector guidance algorithm is used to generate the reentry trajectory which meets the requirements of reentry process constraints and terminal constraints. When the actuator failures occur, aerodynamic parameters, structure and the torque of surfaces of flight vehicles may change unpredictably, which makes the nominal trajectory not satisfy the guidance requirements of the reentry process. Therefore, it is necessary to design a new fault-tolerant guidance law. For the reentry guidance model, the fault-tolerant guidance algorithm is designed to reshape the trajectory based on NFTET. Then there is a new feasible trajectory which meets the requirements in the fault case. From the simulation results we can see that the reshaping trajectory generated from the fault-tolerant guidance algorithm is within the constraints of scope, shows a convergent trend and makes the hypersonic flight vehicles recover from failures, improving the autonomic fault-tolerant ability of the vehicles.

Cite this article

QIAN Jiasong , QI Ruiyun . Fault-tolerant guidance for reentry hypersonic flight vehicles based on NFTET[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(10) : 3370 -3381 . DOI: 10.7527/S1000-6893.2015.0092

References

[1] Dukeman G A. Profile-following entry guidance using linear quadratic regulator theory[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2002.
[2] Shen Z, Lu P. Dynamics lateral entry guidance logic[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6): 949-959.
[3] Xue S, Lu P. Constrained predictor-corrector entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4): 1273-1281.
[4] Lu P. Predictor-corrector entry guidance for low-lifting vehicles[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 1067-1075.
[5] Leavitt J A, Saraf A, Chen D T, et al. Performance of evolved acceleration guidance logic for entry (EAGLE)[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2002.
[6] Saraf A, Leavitt J A, Chen D T, et al. Design and evaluation of an acceleration guidance algorithm for entry[J]. Journal of Spacecraft and Rockets, 2004, 41(6): 986-996.
[7] Schierman J D, Hull J R. In-flight entry trajectory optimization for reusable launch vehicles[C]//Proceedings of the 2005 AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2005: 1256-1262.
[8] Tian B, Zong Q. Optimal guidance for reentry vehicles based on indirect Legendre pseudospectral method[J]. Acta Astronautica, 2011, 68(7): 1176-1184.
[9] Yong E M, Tang G J, Chen L. Rapid trajectory optimization for hypersonic reentry vehicle via Gauss pseudospectral method[J]. Journal of Astronautics, 2008, 29(6): 1766-1772 (in Chinese). 雍恩米, 唐国金, 陈磊. 基于Gauss伪谱方法的高超声速飞行器再入轨迹快速优化[J]. 宇航学报, 2008, 29(6): 1766-1772.
[10] Liu P, Zhao J S, Gu L X. Rapid approach for three-dimensional trajectory optimization of hypersonic reentry vehicles[J]. Flight Dynamics, 2012, 30(3): 263-267 (in Chinese). 刘鹏, 赵吉松, 谷良贤. 三维高超声速飞行器再入轨迹快速优化[J]. 飞行力学, 2012, 30(3): 263-267.
[11] Xie Y F, Tang S. On-line trajectory reshaping of suborbital return entry via pseudospectral method[J]. Flight Dynamics, 2011, 29(6): 63-67 (in Chinese). 解永锋, 唐硕. 基于伪谱法的亚轨道返回轨迹在线重构方法[J].飞行力学, 2011, 29(6): 63-67.
[12] Xu M L, Chen K J, Liu L H, et al. Quasi-equilibrium glide adaptive guidance for hypersonic vehicles[J]. Science China: Technology Science, 2012, 42(4): 378-387 (in Chinese). 徐明亮, 陈克俊, 刘鲁华, 等. 高超声速飞行器准平衡滑翔自适应制导方法[J]. 中国科学: 技术科学, 2012, 42(4): 378-387.
[13] Xu B, Shi Z K. An overview on flight dynamics and control approaches for hypersonic vehicles[J]. Science China Information Sciences, 2015, 58(7): 1-19.
[14] Xu B, Huang X, Wang D, et al. Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation[J]. Asian Journal of Control, 2014, 16(1): 162-174.
[15] Xu B, Wang S, Gao D, et al. Command filter based robust nonlinear control of hypersonic aircraft with magnitude constraints on states and actuators[J]. Journal of Intelligent & Robotic Systems, 2014, 73(1-4): 233-247.
[16] Xu B, Shi Z, Yang C, et al. Neural control of hypersonic flight vehicle model via time-scale decomposition with throttle setting constraint[J]. Nonlinear Dynamics, 2013, 73(3): 1849-1861.
[17] Schierman J D, Ward D G, Monaco J F, et al. A reconfigurable guidance approach for reusable launch vehicles[M]. Defense Technical Information Center, 2001: 163-175.
[18] Schierman J D, Ward D G, Hull J R, et al. Integrated adaptive guidance and control for re-entry vehicles with flight test results[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6): 975-988.
[19] Fahroo F, Doman D. A direct method for approach and landing trajectory reshaping with failure effect estimation[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2004.
[20] Jiang Z, Ordóñez R. On-line robust trajectory generation on approach and landing for reusable launch vehicles[J]. Automatica, 2009, 45(7): 1668-1678.
[21] Jiang Z, Ordónez R. Trajectory generation on approach and landing for RLVs using motion primitives and neighboring optimal control[C]//Proceedings of the 2007 American Control Conference. Piscataway, NJ: IEEE Press, 2007: 1091-1096.
[22] Tian B, Fan W, Zong Q, et al. Nonlinear robust control for reusable launch vehicles in reentry phase based on time-varying high order sliding mode[J]. Journal of the Franklin Institute, 2013, 350(7): 1787-1807.
[23] Dong C. Research on re-entry guidance method for reusable launch vehicles[D]. Harbin: Harbin Institute of Technology, 2010 (in Chinese). 董晨. 可重复使用飞行器再入制导方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

Outlines

/