ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Experimental study on Rayleigh-Ludwieg instability of aircraft wake vortex
Received date: 2015-01-27
Revised date: 2015-03-30
Online published: 2015-04-01
Supported by
National Natural Science Foundation of China (11072206)
Based on the fact that the main wing and tail would produce counter-rotating vortices in the process of taking-off and landing, a set of double vortex generators are designed. Under two different experimental conditions, in terms of changing the position and initial intensity ratio of the double vortex, the wake vortex development of the test mode is acquired, including flow visualizations and particle image velocimetry (PIV) technology. Research reveals that the introduction of a weaker vortex, with a proper position and initial intensity ratio, would change the main vortex original trajectory and promotes its dissipation. However, it does not present an obvious linear relationship between them. The analysis results of vortex trajectory could be used in improving the efficiency of taking-off and landing in airports, the experiments also provide a reference for the overall design of aircrafts: when the requirement for flight mechanics design is satisfied, optimizing the overall aerodynamic layout will have a significant effect on alleviating the intensity of aircraft wake.
BAO Feng , LIU Jinsheng , ZHU Rui , LIU Yue . Experimental study on Rayleigh-Ludwieg instability of aircraft wake vortex[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(7) : 2166 -2176 . DOI: 10.7527/S1000-6893.2015.0091
[1] Luckner R, Höhne G, Fuhrmann M. Hazard criteria for wake vortex encounters during approach[J]. Aerospace Science and Technology, 2004, 8(8): 673-687.
[2] Perry R B, Hinton D A, Stuever R A. NASA wake vortex research for aircraft spacing, AIAA-1997-0057[R]. Reston: AIAA, 1997.
[3] Crouch J D. Instability and transient growth for two trailing vortex pairs, AIAA-1997-0062[R].Reston: AIAA, 1997.
[4] Gerz T, Holzpfel F, Darracq D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences, 2002, 38(3): 181-208.
[5] Crow S C. Stability theory for a pair of trailing vortices [J]. AIAA Journal, 1970, 8(12): 2172-2179.
[6] Brashears M R, Hallock J N. Aircraft wake vortex transport model[J]. Journal of Aircraft, 1974, 11(5): 265-272.
[7] Ciffone D L, Pedley B. Measured wake-vortex characteristics of aircraft in ground effect[J]. AIAA Journal, 1978, 16(2): 78-109.
[8] Greene G C. Wake vortex alleviation, AIAA-1981-0798 [R]. Reston: AIAA, 1981.
[9] Kamran R, Renaud R. Quantitative measurements of wake vortex motion in a water tunnel, AIAA-2001-0111[R]. Reston: AIAA, 2001.
[10] Fabre D, Jacquin L. Stability of a four-vortex aircraft wake model[J]. Physics of Fluids, 2000, 12(10): 2438-2443.
[11] Jacquin L, Molton P, Loiret P, et al. An experiment on jet-wake vortex interaction, AIAA-2007-4363[R]. Reston: AIAA, 2007.
[12] Huang S Q, Shen G X, Konrath R, et al. Experimental investigation of influence of jets on aircraft wake vortices[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5): 899-908 (in Chinese). 黄烁桥, 申功忻, Konrath Robert, 等. 喷流对飞机尾流涡影响的试验研究[J]. 航空学报, 2010, 31(5): 899-908.
[13] Lee T, Gerontakos P. Effect of winglet dihedral on a tip vortex[J]. Journal of Aircraft, 2006, 43(1): 117-124.
[14] Kauertz S, Neuwerth G. Excitation of instabilities in the wake of an airfoil by means of active winglets[J]. Aerospace Science and Technology, 2006, 10(7): 551-562.
[15] Rennich S C, Lele S K. Method for accelerating the destruction of aircraft wake vortices[J]. Journal of Aircraft, 1999, 36(2): 398-404.
[16] Bao F, Vollmers H, Mattner H. Experimental study on controlling wake vortex in water towing tank[C]//20th International Congress on Instrumentation in Aerospace Simulation Facilities. Piscataway, NJ: IEEE Press, 2003: 214- 223.
[17] Quackenbush T R, Boschitsch A H, Bilanin A J. Computational and experimental studies in multipair wake vortex instabilities, AIAA-2013-3190[R]. Reston: AIAA, 2013.
[18] Allen A, Breitsamter C. Experimental investigation of counter-rotating four vortex aircraft wake[J]. Aerospace Science and Technology, 2009, 13(2): 114-129.
[19] Liu Y, Wang J W, Liu Z R, et al. Experimental investigation of wake vortex in a water towing tank[C]//6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment. Xiamen: SPIE, 2012: 314-322.
[20] Liu Y, Zhang Z F, Yang Q, et al. Experimental investigation of counter-rotating two vortices in water towing tank[C]//2010 IEEE International Conference on Intelligent Computing and Intelligent Systems, 2010: 274-278.
[21] Liu Z R, Zhu R. Dual wingtips vortexes Rayleigh-Ludwieg instability experimental research[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 24-30 (in Chinese). 刘志荣, 朱睿. 双翼尖涡Rayleigh-Ludwieg 不稳定性实验研究[J]. 实验流体力学, 2013, 27(2): 24-30.
[22] Ortega J M, Bristol R L, Savas . Experimental study of the instability of unequal-strength counter-rotating vortex pairs[J]. Journal of Fluid Mechanics, 2003, 474: 35-84.
[23] Haverkamp S, Neuwerth G, Jacob D. Studies on the influence of outboard flaps on the vortex wake of a rectangular wing[J]. Aerospace Science and Technology, 2003, 7(5): 331-339.
[24] Haverkamp S, Neuwerth G, Jacob D. Active and passive vortex wake mitigation using control surfaces[J]. Aerospace Science and Technology, 2005, 9(1): 5-18.
[25] Babie B M, Nelson R C. An experimental investigation of bending wave instability modes in a generic four-vortex wake[J]. Physics of Fluids, 2010, 22: 077101-1-077101-15.
[26] He Y, Yang J W, Bao F. Wake vortex control using modified flaps[J]. Applied Mechanics and Materials, 2013, 365: 827-834.
[27] Bao F, Zhu R, Liu Z R, et al. Four-vortex system reconstruction and experimental study of its wake features[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1491-1499 (in Chinese). 鲍锋, 朱睿, 刘志荣, 等. 四涡系统构建及其特性的实验研究[J]. 航空学报, 2015, 36(5): 1491-1499.
/
〈 | 〉 |