ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Review of progresses in hypersonic boundary layer transition mechanism and its applications
Received date: 2014-09-10
Revised date: 2014-11-18
Online published: 2015-03-31
Supported by
National Natural Science Foundation of China (11372296)
Hypersonic boundary layer transition plays an important role in the heat transfer, surface friction and flow separation of aircraft, especially in the reentry vehicle and air-breathing cruise aircraft. However, the cognition about boundary layer transition mechanism in present has been in a controversy. In this paper, the domestic research progresses of the hypersonic boundary layer transition are reviewed from the perspective of the evolution of disturbance wave, including receptivity, linear stability and nonlinear effects. In addition, the artificial transition technology based on harmonic resonance is taken for an example to demonstrate the application of transition mechanism with flow control. The generation and development of the disturbance is the core to recognize the boundary layer transition mechanism. So studying the disturbance wave from this aspect to develop the research application of innovation has significant influence to improve the vehicles' performance.
XIE Shaofei , YANG Wubing , SHEN Qing . Review of progresses in hypersonic boundary layer transition mechanism and its applications[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(3) : 714 -723 . DOI: 10.7527/S1000-6893.2014.0245
[1] McGinley C B, Berry S A, Kinder G R, et al. Review of orbiter flight boundary layer transition data, AIAA-2006-2921[R]. Reston: AIAA, 2006.
[2] Reshotko E. Transition issues at hypersonic speeds, AIAA-2006-0707[R]. Reston: AIAA, 2006.
[3] Stetson K F, Thompson E R, Donaldson J C, et al. Laminar boundary layer stability experiments on a cone at Mach 8, part 1: sharp cone, AIAA-1983-1761[R]. Reston: AIAA, 1983.
[4] Stetson K F, Thompson E R, Donaldson J C, et al. Laminar boundary layer stability experiments on a cone at Mach 8, part 2: blunt cone, AIAA-1984-0006[R]. Reston: AIAA, 1984.
[5] Stetson K F, Thompson E R, Donaldson J C, et al. Laminar boundary layer stability experiments on a cone at Mach 8, part 3: sharp cone at angle of attack, AIAA-1985-0492[R]. Reston: AIAA, 1985.
[6] Stetson K F, Thompson E R, Donaldson J C, et al. Laminar boundary layer stability experiments on a cone at Mach 8, part4:on unit Reynolds number and environmental effects, AIAA-1986-1087[R]. Reston: AIAA, 1986.
[7] Morkovin M V, Reshotko E, Herbert T. Transition in open flow systems a reassessment[J]. Bulletin of the American Physical Society, 1994, 39(9): 1882.
[8] Morkovin M V. Critical evaluation of transition from laminar to turbulent shear layers with emphasis on hypersonically traveling bodies, AFFDL-TR-68-149[R]. Washington, D. C. : NASA, 1969.
[9] Mack L M. Linear stability theory and the problem of supersonic boundary layer transition[J]. AIAA Journal, 1975, 13(3): 423-448.
[10] Fedorov A V, Khokhlov A P. Excitation of unstable modes in a supersonic boundary layer by acoustic waves[J]. Fluid Dynamics, 1991, 26(4): 531-537.
[11] Fedorov A V, Khokhlov A P. Excitation and evolution of unstable disturbances in supersonic boundary layer[C]//Proceedings of the ASME Fluids Engineering Conference. Vancouver: ASME Fluids Engineering Division, 1993, 151: 1-13.
[12] Maslov A A, Shiplyuk A A, Sidorenko A A, et al. Leading edge receptivity of a hypersonic boundary layer on a flat plate[J]. Journal of Fluid Mechanics, 2001, 26(1):73-79.
[13] Zhong X. Leading-edge receptivity to free stream disturbance waves for hypersonic flow over a parabola[J]. Journal of Fluid Mechanics, 2001, 441(16): 315-367.
[14] Shen Q, Li Q, Deng X G, et al. Numerical simulation of two-dimensional hypersonic boundary layer stability, AIAA-1998-2484[R]. Reston: AIAA, 1998.
[15] Zhang Y D, Fu D X, Ma Y W, et al. Numerical simulation of hypersonic boundary layer receptive on blunt cone[J]. SCIENCE CHINA Physics, Mechanics & Astronomy, 2008, 38(9): 1246-1254 (in Chinese). 张玉东, 傅徳薰, 马延文, 等. 钝锥高超声速边界层来流感受性数值研究[J]. 中国科学: 物理学 力学 天文学, 2008, 38(9): 1246-1254.
[16] Mack L M. Boundary-layer stability theory, NASA-CR-131501[R]. Washington, D. C. : NASA, 1973.
[17] Mack L M. Boundary-layer linear stability theory, AGARD 709 [R]. 1984.
[18] Kendall J M. Supersonic boundary layer stability experiments, BSD-TR-67-213[R]. San Bernardino: Aerospace Corporation, 1967.
[19] Kendall J M. Wind tunnel experiments relating to supersonic and hypersonic boundary layer transition[J]. AIAA Journal, 1975, 13(3): 290-299.
[20] Ji F, Shen Q, Yuan X J, et al. Verification of direct numerical simulation on nypersonic boundary layer stability with LST[C]//The 11th Asian Congress of Fluid Mechanics. Malaysia: The Insitution of Engineers, 2006: 57.
[21] Yan M, Luo J S. The bluntness effect on stability of boundary layer over blunt cone in supersonic flow[J]. Acta Aerodynamica Sinica, 2008, 26(4):430-434 (in Chinese). 闫溟, 罗纪生. 超声速流中圆锥头部钝度对边界层稳定性的影响[J]. 空气动力学学报, 2008, 26(4): 430-434.
[22] Su C H, Zhou H. Stability analysis and transition prediction of hypersonic boundary layer over a blunt cone with small nose bluntness at zero angle of attack[J]. Applied Mathematics and Mechanics, 2007, 28(5): 505-513 (in Chinese). 苏彩虹, 周恒. 零攻角小钝头钝锥高超音速绕流边界层的稳定性分析和转捩预报[J]. 应用数学和力学, 2007, 28(5): 505-513.
[23] Ji F, Guan F M, Shen Q, et al. An interferential streak instability of boundary layer over a cone at Mach 6, AIAA-2013-0255[R]. Reston: AIAA, 2013.
[24] Zhong X L, Wang X W. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers[J]. Annual Reviews of Fluid Mechanics, 2013, 44: 527-61.
[25] Chokani N. Nonlinear spectral dynamics of hypersonic laminar boundary layer flow[J]. Physics of Fluids, 1999, 11(12): 3846-3851.
[26] Shiplyuk A N, Bountin D A, Maslov A A, et al. Nonlinear mechanisms of the initial stage of the hypersonic boundary layer transition[J]. Journal of Applied Mechanics and Technical Physics, 2003, 44(5): 654-659.
[27] Mayer C S J, Laible A C, Fasel H F. Numerical investigation of wave packets in a Mach 3.5 cone boundary layer[J]. AIAA Journal, 2011, 49(1): 67-86.
[28] Sivasubramanian J, Fasel H F. Numerical investigation of boundary-layer transition initiated by a wave packet for a cone at Mach 6, AIAA-2010-0900[R]. Reston: AIAA, 2010.
[29] Sivasubramanian J, Fasel H F. Transition initiated by a localized disturbance in a hypersonic flat-plate boundary layer, AIAA-2011-0374[R]. Reston: AIAA, 2011.
[30] Sivasubramanian J, Fasel H F. Nonlinear stages of transition and breakdown in a boundary layer on a sharp cone at Mach 6, AIAA-2012-0087[R]. Reston: AIAA, 2012.
[31] Ji F, Shen Q. Computation and analysis of hypersonic boundary layer stability[C]//The 1st Modern Aerodynamics and Aerothermodynamics Conference. Beijing: The Chinese Society of Theoretical and Applied Mechanics, 2006: 379-382 (in Chinese). 纪锋, 沈清. 高超声速边界层稳定性计算与分析[C]//中国第一届近代空气动力学与气动热力学会议论文集. 北京:中国空气动力学会, 2006: 379-382.
[32] Berry S A, Nowak R J, Horvath T J. Boundary layer control for hypersonic airbreathing vehicles, AIAA-2004-2246[R]. Reston: AIAA, 2004.
[33] Zhao J B, Shen Q, Zhang H J, et al. Boundary layer research of scramjet inlet based on the Tollmien-Schlichting(T-S) wave syntony[J]. Journal of Aerospace Power, 2010, 25(11): 2420-2424 (in Chinese). 赵俊波, 沈清, 张红军, 等. 基于T-S波谐频共振的超燃进气道边界层转捩[J]. 航空动力学报, 2010, 25(11): 2420-2424.
[34] Zhang H J, Shen Q. Experimental studies of leading edge bluntness effects on hypersonic inlet[J]. Journal of Propulsion Technology, 2013, 34(10):1316-1320 (in Chinese). 张红军, 沈清. 高超声速进气道前缘钝度效应试验研究[J]. 推进技术, 2013, 34(10): 1316-1320.
/
〈 | 〉 |