Material Engineering and Mechanical Manufacturing

Stability analysis of robot boring system

  • FANG Qiang ,
  • LI Chao ,
  • FEI Shaohua ,
  • MENG Tao
Expand
  • 1. College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China;
    2. Military Agent's Room of Xi'an Aircraft Industry(Group)Company LTD, People's Liberation Army, Xi'an 710089, China

Received date: 2015-01-06

  Revised date: 2015-02-26

  Online published: 2015-03-25

Supported by

Zhejiang Provincial Natural Science Foundation(LY13E050009)

Abstract

In order to perform the finish boring procedure of the aircraft landing gear's junction hole in the aircraft assembly field, a six axis industrial robot with a special designed end-effector system is proposed. The structure of pressure foot is a key technology to avoid chatter in this robot boring system. Through establishing an analytical model for stability limit prediction considering dynamical characteristics with and without pressure foot structure of the robot boring system, the chatter stability lobes is achieved and studied to reveal the mechanism of the chatter depressing of the pressure foot. In addition, experiments are conducted to verify the rationality of the theoretical modeling under different pressure foot parameter condition. The analytical model and experiments show that the stability of the robot boring process can be enhanced by applying pressure foot system and choosing a rational pressure value. Stable machining area is expanded and chatter is avoided.

Cite this article

FANG Qiang , LI Chao , FEI Shaohua , MENG Tao . Stability analysis of robot boring system[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(2) : 727 -737 . DOI: 10.7527/S1000-6893.2015.0064

References

[1] 许国康. 大型飞机自动化装配技术[J]. 航空学报, 2008, 29(3):734-740. XU G K. Automatic assembly technology for large aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):734-740(in Chinese).
[2] 沈建新, 田威. 基于工业机器人的飞机柔性装配技术[J]. 南京航空航天大学学报, 2014, 46(2):181-189. SHEN J X, TIAN W. Aircraft flexible assembly technology based on industrial robots[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(2):181-189(in Chinese).
[3] ZHANG H, WANG J J, ZHANG G, et al. Machining with flexible manipulator:Toward improving robotic machining performance[C]//International Conference on Advanced Intelligent Mechatronics. Piscataway, NJ:IEEE Press, 2005:1127-1132.
[4] QUINTANA G, CIURANA J. Chatter in machining processes:A review[J]. International Journal of Machine Tools & Manufacture, 2011, 51(5):363-376.
[5] ÖZER A, SEMERCIGIL S. Tool chatter in turning with a two-link robotic arm[J]. Journal of Sound and Vibration, 2013, 332(6):1405-1417.
[6] PAN Z X, ZHANG H, ZHU Z Q, et al. Chatter analysis of robotic machining process[J]. Journal of Materials Processing Technology, 2006, 173(3):301-309.
[7] DEVLIEG R, SITTON K, FEIKERT E, et al. ONCE(one-sided cell end effector) robotic drilling system[C]//SAE 2002 Automated Fastening Conference and Exposition. Warrendale:SAE, 2002:2002-01-2626.
[8] 邓锋. 采用标准关节机器人系统对飞机货舱门结构的自动钻铆[J]. 航空制造技术, 2010(9):32-35. DENG F. Automated fastening of aircraft cargo door structures with a standard articulating robot system[J]. Aeronautical Manufacturing Technology, 2010(9):32-35(in Chinese).
[9] 费少华, 方强, 孟祥磊, 等. 基于压脚位移补偿的机器人制孔锪窝深度控制[J]. 浙江大学学报:工学版, 2012, 46(7):1157-1161. FEI S H, FANG Q, MENG X L, et al. Countersink depth control of robot drilling based on pressure foot displacement compensation[J]. Journal of Zhejiang University:Engineering Science, 2012, 46(7):1157-1161(in Chinese).
[10] OLSSON T, HAAGE M, KIHLMAN H, et al. Cost-efficient drilling using industrial robots with high-bandwidth force feedback[J]. Robotics and Computer-Integrated Manufacturing, 2010(26):24-38.
[11] 王珉, 薛少丁. 飞机大部件对接自动化制孔单向压紧力分析[J]. 南京航空航天大学学报, 2012, 44(4):554-558. WANG M, XUE S D. One-side pressure-force analysis of automatic drilling of aircraft fuselage section-joint assembly[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(4):554-558(in Chinese).
[12] 邱宝贵, 蒋君侠, 毕运波, 等. 大型飞机机身调姿与对接试验系统[J]. 航空学报, 2011, 32(5):908-919. QIU B G, JIANG J X, BI Y B, et al. Posture alignment and joining test system for large aircraft fuselages[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):908-919(in Chinese).
[13] 郭志敏, 蒋君侠, 柯映林. 基于POGO柱三点支撑的飞机大部件调姿方法[J]. 航空学报, 2009, 30(7):1319-1324. GUO Z M, JIANG J X, KE Y L. Posture alignment for large aircraft parts based on three POGO sticks distributed support[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7):1319-1324(in Chinese).
[14] ABELE E, WEIGOLD M, ROTHENBUCHER S. Modeling and identification of an industrial robot for machining applications[J]. CIRP Annals-Manufacturing Technology, 2007, 56(1):387-390.
[15] ANGELES J. On the nature of the Cartesian stiffness matrix[J]. Ingeniería Mecánica, 2010, 3(5):163-170.
[16] 曲巍崴, 侯鹏辉, 杨根军, 等. 机器人加工系统刚度性能优化研究[J]. 航空学报, 2013, 34(12):2823-2832. QU W W, HOU P H, YANG G J, et al. Research on the stiffness performance for robot machining systems[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2823-2832(in Chinese).
[17] BISU C, CHERIF M, GÉRARD A, et al. Dynamic behavior analysis for a six axis industrial machining robot[J]. Advanced Materials Research, 2012, 423(1):65-76.
[18] QIU Z, SHI M, WANG B, et al. Genetic algorithm based active vibration control for a moving flexible smart beam driven by a pneumatic rod cylinder[J]. Journal of Sound and Vibration, 2012, 331(10):2233-2256.
[19] 孔天荣, 梅德庆, 陈子辰. 磁流变智能镗杆的切削颤振抑制机理研究[J]. 浙江大学学报:工学版, 2008, 42(6):1005-1009. KONG T R, MEI D Q, CHEN Z C. Research on mechanism of cutting chatter suppression based on magnetorheological intelligent boring bar[J]. Journal of Zhejiang University:Engineering Science, 2008, 42(6):1005-1009(in Chinese).
[20] JONG M, SCHMALZ F, RENSMAN J W, et al. Post-irradiation characterization of PH13-8Mo martensitic stainless steel[J]. Journal of Nuclear Materials, 2011, 417(1):145-148.

Outlines

/