ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Thermal vibration test on wing structure of high-speed flight vehicle using TARMA model method
Received date: 2014-09-30
Revised date: 2015-03-02
Online published: 2015-03-25
Supported by
Ministry Level Project
It is important to investigate the thermal modal test of wing structure in the design and securely flight of the modern high-speed flight vehicle.The mathematical model of modal parameters identification of time-varying thermal structure, which is validated in a numerical example, is founded by time-dependent auto regression moving average (TARMA) model method.The wing structure thermal modal test system is designed by combining the ground vibration test system with the transient thermal environment simulation system.The vibration displacement of test structure is measured under random excitation signal.The change of the first four modal frequencies with heating time identified by TARMA model, that is founded by vibration displacement and shaking force measured by thermal modal test system, are well agreed with the results of numerical computation, and the error between them is less than 5%.In addition, the identification results under uniform temperature distribution thermal structure are well agreed with the results of the numerical computation, too.The reason of modal frequencies of time varying thermal structure changing with the heating time is discovered, by comparing the identification results under transient temperature field with those under uniform temperature field.The modal frequencies are influenced by structure material degraded and uniform thermal stress in structure together.
LIU Hao , LI Xiaodong , YANG Wenqi , SUN Xiasheng . Thermal vibration test on wing structure of high-speed flight vehicle using TARMA model method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(7) : 2225 -2235 . DOI: 10.7527/S1000-6893.2015.0057
[1] Jack J M, Adam J C, Andrew R C. Aerothermoelastic modeling considerations for hypersonic vehicles, AIAA-2009-7397[R]. Reston: AIAA, 2009.
[2] Falkiewicz N J, Cesnik C E S, Crowell A R, et al. Reduced order aerothermoelastic framework for hypersonic vehicle control simulation, AIAA-2010-7928[R]. Reston: AIAA, 2010.
[3] Vosteen L F, Fuller K E.Behavier of a cantilever plate under rapid heating conditions, NACA RM L55E2[R]. Washington, D. C.: NACA, 1955.
[4] Richard A, Pride L, Ross L.Some effects of rapid heating on box beam[C]//NACA Conference on Aircraft Loads, Flutter and Structures. Washington, D.C.: NACA, 1955: 489-495.
[5] Mcintyre K L.Vibration testing during high heat rates, RTD-TDR-63-4197, Part1[R].Hampton: NASA Langley Research Center, 1963.
[6] Vosteen L F, McWithey R R, Thomson R G. Effect of transient heating on vibration frequencies of some simple wing structures, NACA Technical Note 4054[R]. Washington, D. C.: NACA, 1957.
[7] Spivey N D. High-temperature modal survey of a hot-structure control surface[C]//The 27th International Congressof the Aeronautical Sciences, 2010.
[8] Wu D F, Zhao S G, Pan B, et al. Reserch on thermal-vibration joint test for wing structure of high-speed cruise missile[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1633-1642 (in Chinese). 吴大方, 赵寿根, 潘兵, 等. 高速巡航导弹翼面结构热振联合试验研究[J]. 航空学报, 2012, 33(9): 1633-1642.
[9] Wu D F, Zhao S G, Pan B, et al. Experiment study on high temperature thermal-vibration characteristics for hollow wing structure of high-speed flight vehicles[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 598-605 (in Chinese). 吴大方, 赵寿根, 潘兵, 等. 高速飞行器中空翼结构高温热振动特性试验研究[J]. 力学学报, 2013, 45(4): 598-605.
[10] Su H C, Qian Y B, Li Z W, et al. The study of rudder thermo-modal test technique[J]. Structure & Environment Engineering, 2011, 38(5): 18-24 (in Chinese). 苏华昌, 骞永博, 李增文, 等. 舵面热模态试验技术研究[J]. 强度与环境, 2011, 38(5): 18-24.
[11] Xiao N F, Liu Y Q. Research of control technology in thermal-vibration test[J]. Structure & Environment Engineering, 2012, 39(2): 53-57 (in Chinese). 肖乃风, 刘永清. 热振联合试验控制技术研究[J]. 强度与环境, 2012, 39(2): 53-57.
[12] Shi Z Y, Law S S. Identification of linear time-varying dynamical systems using Hilbert transform and EMD method[J]. Journal of Application Mechanics, 2007, 74(5): 223-230.
[13] Xu X Z, Hua H X, Zhang Z Y, et al. Time-varying modal frequency identification by using time-frequency representation[J]. Journal of Vibration and Shock, 2002, 21(2): 36-44 (in Chinese). 续秀忠, 华宏星, 张志谊, 等. 应用时频表示进行结构时变模态频率辨识[J]. 振动与冲击, 2002, 21(2): 36-44.
[14] Shi Z Y, Shen L. Parameter identification of linear time-varying dynamical system based on wavelet method[J]. Journal of Vibration, Measurement & Diognosis, 2008, 28(2): 108-112 (in Chinese). 史治宇, 沈林. 基于小波方法的时变动力系统参数识别[J]. 振动测试与诊断, 2008, 28(2): 108-112.
[15] Xu X Z, Zhang Z Y. Decomposition of time-varying modal by time-frequency filter[J]. Noise and Vibration Control, 2005(5): 15-17 (in Chinese). 续秀忠, 张志谊. 基于时频滤波的时变模态分解方法[J]. 噪声与振动控制, 2005(5): 15-17.
[16] Yu K P. Study on time-varying structural dynamics numerical algorithm and modal parameter identification method[D]. Harbin: Harbin Institute of Technology, 2000 (in Chinese). 于开平. 时变结构动力学数值方法及其模态参数识别方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2000.
[17] Xu X Z, Zhang Z Y, Hua H X, et al. Identification of time-variant modal parameters by a time-varying parameter approach[J]. Acta Aeronautica et Astronautica Sinica, 2003, 24(3): 230-233 (in Chinese). 续秀忠, 张志谊, 华宏星, 等. 应用时变参数建模方法辨识时变模态参数[J]. 航空学报, 2003, 24(3): 230-233.
[18] The Editor Committee of "China Aeronautical Material Handbook". China aeronautical material handbook: Vol. 4[M]. 2nd ed. Beijing: China Standards Press, 2001: 74-82 (in Chinese). 《中国航空材料手册》编辑委员会. 中国航空材料手册第4卷,钛合金、铜合金[M]. 2版. 北京: 中国标准出版社, 2001: 74-82.
/
〈 | 〉 |