ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Influence of cross-sectional shape on the performance of supersonic magnetohydrodynamic generator
Received date: 2014-12-19
Revised date: 2015-02-09
Online published: 2015-03-20
Supported by
National Natural Science Foundation of China (11372028);Fundamental Research Funds for the Central Universities
Three-dimensional numerical simulations were performed to study the thermal and electromagnetic fluid characteristics of supersonic magnetohydrodynamic (MHD) generator under the influence of inlet cross-sectional shape, which tends to be applied to improv the performance of propulsion system of scramjet. A joint numerical procedure, composed of an entropy conditioned scheme for solving the non-homogeneous Navier-Stokes equations and an successioe over relaxation (SOR) method for solving the elliptic equation governing the electrical potential, was used in this paper. Numerical results indicate that the electromagnetic parameters, such as electric field, electric current density and Lorentz force etc., vary periodically along the electrode wall. The extreme values of the electromagnetic parameters are located at the edges of the electrodes. Due to the influence of width between the electrode pair, the subsequent current eddies and secondary flow on the cross-section substantially affect the performance of MHD generator. In case of small cross-sectional shape parameter, severe Joule heating and weak secondary flow are induced in the MHD generator, and vice versa in case of high shape parameter. Consequently, when the cross-sectional shape parameter α is 0.8, the enthalpy extraction ratio and electric efficiency of MHD generator are considerable.
LYU Haoyu , ZHEN Huaping , LEE Chunhian , ZHANG Yining . Influence of cross-sectional shape on the performance of supersonic magnetohydrodynamic generator[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(11) : 3549 -3556 . DOI: 10.7527/S1000-6893.2015.0045
[1] Gurijanov E P, Harsha P T. AJAX:new directions in hypersonic technology, AIAA-1996-4609[R]. Reston:AIAA,1996.
[2] Lineberry J T, Begg L L, Castro J H, et al. Scramjet driven MHD power demonstration-HVEPS program, AIAA-2006-3080[R]. Reston:AIAA, 2006.
[3] Nikodijevic D D, Stamenkovic Z M, Zivkovic D S, et al. Active control of flow and heat transfer in boundary layer on the porous body of arbitrary shape[J]. Thermal Science, 2012, 16(S2):S295-S309.
[4] Murray R C, Zaidi S H, Carraro M R, et al. Magnetohydrodynamic power generation using externally ionized, cold, supersonic air as working fluid[J]. AIAA Journal, 2006, 44(1):119-127.
[5] Lee C H, Lu H Y. Quasi-one-dimensional parametric study for MHD generator in MHD bypass scramjet system, AIAA-2007-0644[R]. Reston:AIAA, 2007.
[6] Chen G, Zhang J B, Lee C H. Numerical simulation of external MHD generator on board reentry vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(2):135-139(in Chinese).陈刚,张劲柏,李椿萱.再入飞行器表面磁流体发电装置数值模拟[J].北京航空航天大学学报, 2010, 36(2):135-139.
[7] He M S, Yang W J, Zheng X M, et al. Viscosity effect of hypersonic inlet based on magnetohydrodynamic control[J]. Journal of Aerospace Power, 2013, 28(2):365-371(in Chinese).何淼生,杨文将,郑小梅,等.基于磁流体控制的高超声速进气道黏性效应[J].航空动力学报, 2013, 28(2):365-371.
[8] Li Y W, Li Y H, Lu H Y, et al. Preliminary experimental investigation on MHD power generation using seeded supersonic argon flow as working fluid[J]. Chinese Journal of Aeronautics, 2011, 23(12):701-708.
[9] Zhu T, Li Y H, Zhang B L, et al. Transient acceleration system of magnetoplasmadynamic supersonic airstream and its experimental research[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8):1375-1383(in Chinese).朱涛,李应红,张百灵,等.磁激等离子体超声速气流的瞬态加速系统及其实验研究[J].航空学报, 2012, 33(8):1375-1383.
[10] Lu H Y, Lee C H, Dong H T, et al. Hall effects in three-dimensional MHD generator[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(3):306-314(in Chinese).吕浩宇,李椿萱,董海涛,等. Hall效应对三维磁流体发生器的影响[J].力学学报, 2008, 40(3):306-314.
[11] Zhang K P, Tian Z Y, Feng D H, et al. Numerical study of acceleration/deceleration control of three dimensional magnetohydrodynamic flow in channel[J]. Acta Aerodynamics Sinica, 2009, 27(4):474-479(in Chinese).张康平,田正雨,冯定华,等.三维磁流体动力学管道流动加减速控制数值研究[J].空气动力学报, 2009, 27(4):474-479.
[12] Lu H Y, Lee C H, Dong H T. Characterization of the three-dimensional supersonic flow for the MHD generator[J]. Science in China Series G:Physics, Mechanics & Astronomy, 2009, 52(4):534-545.
[13] Ohkuma H, Takahashi T, Fujino T, et al. Performance prediction of scramjet driven DCW MHD generator with three-dimensional analysis, AIAA-2008-4333[R]. Reston:AIAA, 2008.
[14] Tamada Y, Niwa N, Takahashi T, et al. Influence of cross-sectional shape on generator performance and electromagnetic fluid phenomena of DCW-MHD generators for hypersonic airplanes, AIAA-2013-2891[R]. Reston:AIAA,2013.
[15] Chen Z, Zhang J B, Lee C H. Direct numerical simulation of the turbulent MHD channel flow at low magnetic Reynolds number for electric correlation characteristics[J]. Science in China Series G:Physics, Mechanics & Astronomy, 2010, 53(10):1901-1913.
[16] Lu H Y, Lee C H. Influence of Hall effects on characteristics of magnetohydrodynamic converging channel[J]. Chinese Science Bulletin, 2010, 55(14):1454-1460.
/
〈 | 〉 |