ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Fast fault diagnosis of multi-effectors aircraft with control surface damage
Received date: 2014-05-29
Revised date: 2015-01-07
Online published: 2015-03-20
Supported by
National Natural Science Foundation of China (61304120)
An adaptive compensation observer is presented for fast fault diagnosis of multi-effectors aircraft in the presence of control surface damage, which directly estimates the deflection angles of control surfaces. Firstly, an augmented observer is designed for the estimation of system input and an adaptive compensation is introduced to improve the dynamic tracking performance of observer. Secondly, new adaptive thresholds are designed for the fast fault detection and reduction of the false alarm rate. Finally, the actuator fault feature of control surface is employed to reset the initial conditions. The limited memory least square method is developed to achieve a real-time estimation of mutation parameters, which is applied for fault isolation. Simulation results suggest that in different cases of actuator faults of control surface damage, the proposed observer methods can achieve fault alarm within 20 ms and determine the fault location in 0.22 s. Furthermore, the identification method can accurately estimate the degree of damaging within 0.2 s after fault alarm.
WANG Fawei , DONG Xinmin , CHEN Yong , WANG Xiaoping , LIAO Kaijun . Fast fault diagnosis of multi-effectors aircraft with control surface damage[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(7) : 2350 -2360 . DOI: 10.7527/S1000-6893.2015.0009
[1] Zhou D H, Ding X. Theory and applications of fault tolerant control[J]. Acta Automatica Sinica, 2000, 26(6): 787-797 (in Chinese). 周东华, Ding X. 容错控制理论及其应用[J]. 自动化学报, 2000, 26(6): 787-797.
[2] Chen F Y, Jiang B. Direct self-repairing control for aircraft[M]. Beijing: National Defense Industry Press, 2014: 1-5 (in Chinese). 陈复扬, 姜斌. 飞机直接自修复控制[M]. 北京: 国防工业出版社, 2014: 1-5.
[3] Chen Z J, Zhang R L, Zhang P, et al. Flight control: challenges and opportunities[J]. Acta Automatica Sinica, 2013, 39(6): 703-710 (in Chinese). 陈宗基, 张汝麟, 张平, 等. 飞行器控制面临的机遇与挑战[J].自动化学报, 2013, 39(6): 703-710.
[4] Chowdhary G, DeBusk W M, Johnson E N. Real-time system identification of a small multi-engine aircraft with structural damage, AIAA-2010-3472[R]. Reston: AIAA, 2010.
[5] Morelli E A. Real-time parameter estimation in the frequency domain[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(5): 812-818.
[6] Tang W, Qiao Q, Shi Z K. On the choice of parameter constraint for frequency domain least squares identification[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2253-2260 (in Chinese). 唐炜, 乔倩, 史忠科. 频域最小二乘辨识方法的参数约束条件选取[J]. 航空学报, 2012, 33(12): 2253-2260.
[7] Huang C T, Wang L X. On-line fault diagnosis for control surfaces of multi-control effector flying wings[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 58-66 (in Chinese). 黄成涛, 王立新. 多操纵面飞翼构型飞机舵面故障在线诊断方法[J]. 航空学报, 2011, 32(1): 58-66.
[8] Su H Q, Song S J, Deng J H. A better on-line identification algorithm with impairment of aircraft control surfaces considered[J]. Journal of Northwestern Polytechnical University, 2005, 23(3): 316-320 (in Chinese). 苏浩秦, 宋述杰, 邓建华. 适用于飞机舵面损伤情况下的一种在线辨识算法研究[J]. 西北工业大学学报, 2005, 23(3): 316-320.
[9] Matthew C, Ruschmann N, Wu E. Actuator fault diagnosis using two-stage extended Kalman filters, AIAA-2010-7703[R]. Reston: AIAA, 2010.
[10] Han Y, Oh S, Cho Bi, et al. Fault detection and identification of aircraft control surface using adaptive observer and input bias estimator[J]. IET Control Theory and Applications, 2012, 6(10): 1367-1387.
[11] Ducard G J J. Fault-tolerant flight control and guidance systems for a small unmanned aerial vehicle[M]. Chen Z L, Xie Z G, translated. Beijing: National Defense Industry Press, 2012: 43-84 (in Chinese). Ducard G J J. 容错飞行控制与导航系统-小型无人机实用方法[M]. 陈自力, 谢志刚, 译. 北京: 国防工业出版社, 2012: 43-84.
[12] Hu S S, Guo W, Zhang D F. Methods of structure fualt detection and reconfiguration of self-repairing control law for a fighter[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(6): 674-677 (in Chinese). 胡寿松, 郭伟, 张德发. 歼击机结构故障的检测与自修复控制律重构[J]. 航空学报, 1998, 19(6): 674-677.
[13] Zhang P, Chen Z J. Fault detection filter for the control surface failures of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(4): 371-373 (in Chinese). 张平, 陈宗基. 用于检测操纵面损伤的故障检测滤波器[J]. 航空学报, 1999, 20(4): 371-373.
[14] Li Q, Shen C L, Guo S F. Detection and isolation of control surface effectiveness faitures[J]. Acta Aeronautica et Astronautica Sinica, 1997, 18(6): 693-697 (in Chinese). 李清, 沈春林, 郭锁凤. 自修复飞行控制系统舵面/作动器故障检测与隔离[J]. 航空学报, 1997, 18(6): 693-697.
[15] Alwi H, Edwards C. Fault detection and fault-tolerant control of a civil aircraft using a sliding-mode-based scheme[J]. IEEE Transactions on Control Systems Technology, 2008, 16(3): 499-510.
[16] Li L L. Robust fault diagnosis of nonlinear systems[D]. Beijing: Tsinghua University, 2006 (in Chinese). 李令莱. 非线性系统的鲁棒故障诊断[D]. 北京: 清华大学, 2006.
[17] Chen J, Patton R J. Robust model-based fault diagnosis for dynamics ystems[M]. Wu J J, translated. Beijing: National Defense Industry Press, 2009: 48-83 (in Chinese). Chen J, Patton R J. 动态系统基于模型的鲁棒故障诊断[M]. 吴建军, 译. 北京: 国防工业出版社, 2009: 48-83.
[18] Chen L, Patton R J. A mixed H∞/H_LPV FDD observer for nonlinear aircraft, AIAA-2011-6683[R]. Reston: AIAA , 2011.
[19] Gao Z W, Ding S X. Actuator fault robust estimation and fault-tolerant control for a class of nonlinear descriptor systems[J]. Automatica, 2007, 43(5): 912-920.
[20] Forssell L, Nilsson U. Admire the aero-data model in a research environment version 4.0, model description, FOI-R-1624-SE[R]. Kista, Stockholm: Swedish Defence Research Agency (FOI), 2005.
[21] Alwi H, Edwards C. Fault tolerant control using sliding modes with on-line control allocation[J]. Automatica, 2008, 44(7): 1859-1866.
/
〈 | 〉 |