Material Engineering and Mechanical Manufacturing

Space non-cooperative target detection based on improved features of histogram of oriented gradient

  • CHEN Lu ,
  • HUANG Panfeng ,
  • CAI Jia
Expand
  • 1. National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Research Center for Intelligent Robotics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2015-01-04

  Revised date: 2015-03-11

  Online published: 2015-03-18

Supported by

National Natural Science Foundation of China(11272256,61005062)

Abstract

Traditional non-cooperative target detection methods are mostly based on different matching templates which are well-designed with additional prior information. Moreover, one single template can be merely used to detect objects with similar shapes and structures, causing low applicability in detecting non-cooperative targets whose prior information are usually unknown. In order to solve those problems and inspired by the object estimation technique based on normed gradient, an object detection algorithm using improved features of histogram of oriented gradient is proposed. A training data set composed of natural images and target images is first built manually. Secondly, we extract the modified HOG information in the labeled regions to preserve detailed structures of the local features. Then, the cascaded support vector machine is used to train the model autonomously, which does not require prior information. Finally, we design several tests using the trained model to detect targets from the testing images. Numerous experiments demonstrate that the detection rates of the proposed method are 94.5% and 94.2% respectively when applied to testing sets with 4 953 and 100 images. The time consumption of extracting one image is about 0.031 s while it is robust to object rotation and illumination under certain condition.

Cite this article

CHEN Lu , HUANG Panfeng , CAI Jia . Space non-cooperative target detection based on improved features of histogram of oriented gradient[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(2) : 717 -726 . DOI: 10.7527/S1000-6893.2015.0072

References

[1] HUANG P F, CAI J, MENG Z J, et al. Novel method of monocular real-time feature point tracking for tethered space robots[J]. Journal of Aerospace Engineering, 2014, 27(6):04014039.
[2] 徐文福, 梁斌, 李成, 等. 空间机器人捕获非合作目标的测量与规划方法[J]. 机器人, 2010, 32(1):61-69. XU W F, LIANG B, LI C, et al. Measurement and planning approach of space robot for capturing non-cooperative target[J]. Robot, 2010, 32(1):61-69(in Chinese).
[3] WONG S K. Non-cooperative target recognition in the frequency domain[J]. IEE Proceedings-Radar, Sonar and Navigation, 2004, 151(2):77-84.
[4] RAMIREZ V A, GUTIERREZ S A M, YANEZ R E S. Quadrilateral detection using genetic algorithms[J]. Computacióny Sistemas, 2011, 15(2):181-193.
[5] 史骏, 姜志国, 冯昊, 等. 基于弹性网稀疏编码的空间目标识别[J]. 航空学报, 2013, 34(5):1129-1139. SHI J, JIANG Z G, FENG H, et al. Elastic net sparse coding-based space object recognition[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1129-1139(in Chinese).
[6] CAI J, HUANG P F, WANG D K. Novel dynamic template matching of visual servoing for tethered space robot[C]//2014 4th IEEE International Conference on Information Science and Technology(ICIST). Piscataway, NJ:IEEE Press, 2014:389-392.
[7] 徐贵力, 徐静, 王彪, 等. 基于光照模糊相似融合不变矩的航天器目标识别[J]. 航空学报, 2014, 35(3):857-867. XU G L, XU J, WANG B, et al. CIBA moment invariants and their use in spacecraft recognition algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):857-867(in Chinese).
[8] 李予蜀, 余农, 吴常泳, 等. 红外航空图像自动目标识别的形态滤波神经网络算法[J]. 航空学报, 2002, 23(4):368-372. LI Y S, YU N, WU C Y, et al. Morphological neural networks with applications to automatic target recognition in aeronautics infrared image[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(4):368-372(in Chinese).
[9] 黄凯奇, 任伟强, 谭铁牛. 图像物体分类与检测算法综述[J]. 计算机学报, 2014, 36(6):1225-1240. HUANG K Q, REN W Q, TAN T N. A review on image classification and detection[J]. Chines Journal of Computers, 2014, 36(6):1225-1240(in Chinese).
[10] ZITNICK C L, DOLLÁR P. Edgebox:Locating object proposals from edges[C]//Computer vision-ECCV 2014. Zurich:Springer International Publishing, 2014:391-405.
[11] HEITZ G, KOLLER D. Learning spatial context:Using stuff to find things[C]//Computer vision-ECCV 2008. Marseille:Springer, 2008:30-43.
[12] YANULEVSKAYA V, UIJLINGS J, GEUSEBROEK J M. Salient object detection:From pixels to segments[J]. Image and Vision Computing, 2013, 31(1):31-42.
[13] ALEXE B, DESELAERS T, FERRARI V. Measuring the objectness of image windows[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2189-2202.
[14] RAHTU E, KANNALA J, BLASCHKO M. Learning a category independent object detection cascade[C]//2011 IEEE International Conference on Computer Vision(ICCV). Piscataway, NJ:IEEE Press, 2011:1052-1059.
[15] CHENG M M, ZHANG Z M, LIN W Y, et al. BING:Binarized normed gradients for objectness estimation at 300fps[C]//2011 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway, NJ:IEEE Press, 2014.
[16] ZHANG Z, WARRELL J, TORR P H S. Proposal generation for object detection using cascaded ranking SVMs[C]//2011 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway, NJ:IEEE Press, 2011:1497-1504.
[17] EVERINGHAM M, GOOL L V, WILLIAMS C K I, et al. The pascal visual object classes(VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338.
[18] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Press, 2005, 1:886-893.
[19] DALAL N. Finding people in images and videos[D]. Grenoble:Institut National Polytechnique de Grenoble-INPG, 2006:33-50.
[20] UIJLINGS J, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2):154-171.
[21] LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. Piscataway, NJ:IEEE Press, 1999, 2:1150-1157.
[22] JARRETT K, KAVUKCUOGLU K, RANZATO M, et al. What is the best multi-stage architecture for object recognition?[C]//2009 IEEE 12th International Conference on Computer Vision. Piscataway, NJ:IEEE Press, 2009:2146-2153.

Outlines

/