Special Column of Aviation Guided Weapons

Numerical investigation of multi-lateral jets interactions flow characteristics at high angle of attack

  • LI Bin ,
  • WANG Xuezhan ,
  • LIU Xianming
Expand
  • 1. China Airborne Missile Academy, Luoyang 471009, China;
    2. Aviation Key Laboratory of Science and Technology on Airborne Guided Weapons, Luoyang 471009, China

Received date: 2015-01-16

  Revised date: 2015-03-01

  Online published: 2015-03-16

Supported by

Aeronautical Science Foundation of China (2014ZA12001)

Abstract

The influence of the interaction flow field with multi-lateral jets on the aerodynamic characteristics of one missile at high angles of attack is investigated using computational fluid dynamics (CFD) method. The CFD method based on Reynolds-averaged Navier-Stokes (RANS) equations is first validated using a standard model with lateral jet and a missile of high fineness ratio, and the capability of solving jet interaction flow field and flow field around a missile at high angles of attack is confirmed. Numerical simulations are then performed on the interaction flow field with multi-lateral jets at high angles of attack. The results show that the angle of attack and the number of lateral jets have a relatively large influence on the aerodynamic load distribution. The differences in the axial distribution of the normal force coefficient and the flow structure between jet-on and jet-off reveal the mechanism of the jet interaction effects on the aerodynamic characteristics of the missile at different angles of attack. Preliminary analysis of the influence of the lateral jets on the pull-up maneuver is provided in the end and the results show that the lateral jets cannot speed up the pull-up process at an altitude of 10 km.

Cite this article

LI Bin , WANG Xuezhan , LIU Xianming . Numerical investigation of multi-lateral jets interactions flow characteristics at high angle of attack[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(9) : 2828 -2839 . DOI: 10.7527/S1000-6893.2015.0054

References

[1] Fan H T. Characteristics and key technologies of the fifth generation of air to air missiles[J]. Aeronautical Science & Technology, 2011(3): 1-5 (in Chinese). 樊会涛. 第五代空空导弹的特点及关键技术[J]. 航空科学技术, 2011(3): 1-5.
[2] Srivastava B. Aerodynamic performance of supersonic missile body and wingtip mounted lateral jets[J]. Journal of Spacecraft and Rockets, 1998, 35(3): 278-286.
[3] Margason R J. Fifty years of jet in cross flow research, AGARD-CP-534[R]. Paris: AGARD, 1993.
[4] Roger R P. The aerodynamics of jet thruster control for supersonic/hypersonic endo-interceptors: Lessons learned, AIAA-1999-0804[R]. Reston: AIAA, 1999.
[5] Tang Z G, Yang Y G, Liu J, et al. The investigation and expectation on lateral jet interaction/control[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(4): 1-6 (in Chinese). 唐志共, 杨彦广, 刘君, 等. 横向喷流干扰/控制研究进展[J]. 实验流体力学, 2010, 24(4): 1-6.
[6] Li S X. Progress in aerodynamics of combination control for vehicles at high speed[J]. Advances in Mechanics, 2009, 39(6): 740-755 (in Chinese). 李素循. 近空间飞行器的气动复合控制原理及研究进展[J]. 力学进展, 2009, 39(6): 740-755.
[7] Graham M J, Weinacht P. Numerical investigation of supersonic jet interaction for axi-symmetric bodies[J]. Journal of Spacecraft and Rockets, 2000, 37(5): 675-683.
[8] Graham M J, Weinacht P, Brandeis J. Numerical investigation of supersonic jet interaction for finned bodies[J]. Journal of Spacecraft and Rockets, 2002, 39(3): 376-383.
[9] Wang S J. Numerical simulation for interaction flow field between external and lateral jet flow[D]. Beijing: Beijing Institute of Technology, 2008 (in Chinese). 王树军. 旋转导弹横向喷流干扰流场数值模拟[D]. 北京: 北京理工大学, 2008.
[10] Byung Y M, Jae W L, Yung H B. Investigation of the shock interaction effect on the lateral jet controlled missile, AIAA-2003-3932[R]. Reston: AIAA, 2003.
[11] Zhou W, Liu H, Liu J, et al. Numerical simulation of lateral jet interaction in supersonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(2): 108-112 (in Chinese). 周维, 刘宏, 刘嘉, 等. 超声速来流中侧向喷流干扰流场的数值模拟[J]. 航空学报, 2004, 25(2): 108-112.
[12] Sun D C, Wang G, Jia X H, et al. Influence of double jet on air-to-air missile with lateral injection control[J]. Journal of Solid Rocket Technology, 2007, 30(3): 188-190 (in Chinese). 孙德川, 王广, 贾晓洪, 等. 双喷流对空空导弹直接力控制的影响[J]. 固体火箭技术, 2007, 30(3): 188-190.
[13] Ma M S, Deng Y Q, Zheng M, et al. Numerical investigation of supersonic jet interactions for tactical bodies[J]. Acta Aerodynamic Sinica, 2007, 25(4): 468-473 (in Chinese). 马明生, 邓有奇, 郑鸣, 等. 超声速侧向多喷流干扰特性数值模拟[J]. 空气动力学学报, 2007, 25(4): 468-473.
[14] Ebrahimi H B. Numerical investigation of jet interaction in a supersonic freestream[J]. Journal of Spacecraft and Rockets, 2008, 45(1): 95-103.
[15] Liu X Q, Wu Y Z. The computation of the lateral jet turbulence flow using DES method[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(3): 209-213 (in Chinese). 刘学强, 伍贻兆. 用DES数值模拟具有横向喷流的稳流流场[J]. 航空学报, 2004, 25(3): 209-213.
[16] Xu Y, Xu X, Wang Z J, et al. Experimental investigation on multi-jet interference[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(5): 13-16 (in Chinese). 徐筠, 徐翔, 王志坚, 等. 多喷口喷流对侧向喷流流场影响的风洞试验研究[J]. 实验流体力学, 2012, 26(5): 13-16.
[17] Sekar B. Three dimensional computation of parallel and non-parallel injection in supersonic flow, AIAA-1995-0886 [R]. Reston: AIAA, 1995.
[18] Chen J Q, Zhang Y F, Jiang D W, et al. Numerical simulation of complex flow with multi lateral jets interactions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6): 735-743 (in Chinese). 陈坚强, 张毅锋, 江定武, 等. 侧向多喷口干扰复杂流动数值模拟研究[J]. 力学学报, 2008, 40(6): 735-743.
[19] Wang J Q, Li S X. Study on the characteristics of interaction flow fields induced by supersonic multi-jets[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4): 575-583 (in Chinese). 王军旗, 李素偱. 超声速多喷流干扰流场特性研究[J]. 力学学报, 2009, 41(4): 575-583.
[20] Aswin G, Chakraborty D. Numerical simulation of transverse side jet interaction with supersonic free stream[J]. Aerospace Science and Technology, 2010, 14(5): 295-301.
[21] Li L P, Xu M. Character and effect of interaction between a lateral jet and supersonic cross-flow at large angles of attack[J]. Journal of Solid Rocket Technology, 2011, 34(5): 543-547 (in Chinese). 李立沛, 徐敏. 大攻角侧向喷流流场特性及喷流干扰效应[J]. 固体火箭技术, 2011, 34(5): 543-547.
[22] Li J, Li B, Liu X M, et al. The effect of jet interaction on aerodynamic characteristic at high angle of attack for missile[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(4): 153-156 (in Chinese). 李剑, 李斌, 刘仙名, 等. 侧向喷流对导弹大攻角气动特性影响数值研究[J]. 弹箭与制导学报, 2013, 33(4): 153-156.
[23] Anderson J D. Computational fluid dynamics: Basic and application[M]. Wu S P, Zhao L M, translated. Beijing: China Machine Press, 2007: 57-65 (in Chinese). Anderson J D. 计算流体力学: 基础与应用[M]. 吴颂平, 赵刘淼, 译. 北京: 机械工业出版社, 2007: 57-65.
[24] Menter F R. Two-equation eddy-viscosity turbulence mmodels for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[25] Fan H T. Air-to-air missile conceptual design[M]. Beijing: Aviation Industry Press, 2013: 49-50 (in Chinese). 樊会涛. 空空导弹方案设计原理[M]. 北京: 航空工业出版社, 2013: 49-50.
[26] Brandeis J, Gill J. Experimental investigation of supersonic and hypersonic jet interaction on missile configurations[J]. Journal of Spacecraft and Rockets, 1998, 35(3): 296-302.
[27] Голуоев И С. Anti-aircraft missile design[M]. Beijing: China Astronautic Publishing House, 2004: 210-211 (in Chinese). 戈卢别夫 И С. 防空导弹设计[M]. 北京: 中国宇航出版社, 2004: 210-211.

Outlines

/