Electronics and Control

Suicide drones' attack strategy on the condition of escort free-flight decoys influence

  • WANG Xiaoguang ,
  • ZHANG Weiguo ,
  • LIU Yang
Expand
  • College of Automation, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2014-09-25

  Revised date: 2015-03-01

  Online published: 2015-03-16

Supported by

National Natural Science Foundation of China (61374032); Aeronautical Science Foundation of China (20125853035)

Abstract

The suicide drones' attack strategy under the influence of enemy's escort free-flight decoys is considered. Firstly, according to the suicide drone's operational characteristic, improved Lanchester equations are proposed. On the basis of airborne sensor's operational performance analysis, differential equations of the both sides' force attritions are established, so that the suicide drone's warfare rule can be described. Secondly, the optimal control method is applied to attack strategy analysis in Lanchester equations. Considering the Lanchester equations as state equations and taking suicide drones' attack probability as the control variable, the optimal control models of fixed and variable at terminal time can be separately established. Both optimal control problems are solved with Gauss pseudospectral method, so that the optimal attack strategies can be obtained. Lastly, the suicide drones' attack strategied are analyzed when enemy's killability is unknown, and the corresponding optimal attack strategies can be obtained. Under the given initial conditions, a series of simulations and verifications are carried out. The simulation results show that the models are feasible and the algorithm is effective, the methods described in the paper can provide references for air combat decision making.

Cite this article

WANG Xiaoguang , ZHANG Weiguo , LIU Yang . Suicide drones' attack strategy on the condition of escort free-flight decoys influence[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(9) : 3137 -3146 . DOI: 10.7527/S1000-6893.2015.0056

References

[1] Austin R. Unmanned air systems UAV design, development and deployment[M]. West Sussex: A John Wiley and Sons, Ltd., 2010: 255.
[2] Xue Y, Zhuang Y, Zhang Y Y, et al. Multiple UCAV cooperative jamming air combat decision making based on heuristic self-adaptive discrete differential evolution algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 342-351 (in Chinese). 薛羽, 庄毅, 张友益, 等. 基于启发式自适应离散差分进化算法的多UCAV协同干扰空战决策[J]. 航空学报, 2013, 34(2): 342-351.
[3] Zhang T, Yu L, Zhou Z L, et al. Coordinated attacking strategy for MALD and fighter in medium-range air combat[J]. Journal of Air Force Engineering University: Natural Science Edition, 2013, 14(3): 1-5 (in Chinese). 张涛, 于雷, 周中良, 等. 中距空战下战斗机使用诱饵弹协同攻击策略[J]. 空军工程大学学报: 自然科学版, 2013, 14(3): 1-5.
[4] Guo X H, Song B F. Algorithm of aircraft hit probability in infrared jamming scenario[J]. Electronics Optics & Control, 2005, 12(6): 5-7 (in Chinese). 郭晓辉, 宋笔锋. 红外干扰下飞机击中概率计算[J]. 电光与控制, 2005, 12(6): 5-7.
[5] Kish B, Jacques D, Pachter M. Optimal control of sensor threshold for autonomous wide-area-search munitions[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1239-1248.
[6] Jacques D, Bode J, Pachter M. Optimization of an autonomous weapon system's operating characteristic [J]. IEEE Systems Journal, 2009, 3(4): 489-498.
[7] Rosario R. Optimal sensor threshold control and the weapon operating characteristic for autonomous search and attack munitions[D]. Ohio: Air Force Institute of Technology, 2007.
[8] Washburn A, Kress M. Combat modeling[M]. New York: Springer Science and Business Media, LLC, 2009: 94-95.
[9] Wang S F, Liu Y C, Guan S Y, et al. Study of cooperative operation effectiveness for UAV with escort free-flight decoys[J]. Journal of Astronautics, 2007, 28(2): 498-502 (in Chinese). 王斯福, 刘永才, 关世义, 等. 伴飞诱饵支援条件下无人飞行器协同作战效能研究[J]. 宇航学报, 2007, 28(2): 498-502.
[10] Wang H, Zeng J Y, Luo M S. Study of escort free-flight decoys influence on anti-ship missile penetration to ship-to-air missile[J]. Fire Control & Cornmand Control, 2011, 36(5): 68-71 (in Chinese). 汪浩, 曾家有, 罗木生. 伴飞诱饵支援对反舰导弹突防舰空导弹的影响[J]. 火力与指挥控制, 2011, 36(5): 68-71.
[11] Niu D Z, Chen C X, Ban F, et al. Prediction on air combat process based on effectiveness evaluation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1416-1423 (in Chinese). 牛德智, 陈长兴, 班斐, 等. 基于效能评估的航空作战进程预测[J]. 航空学报, 2014, 35(5): 1416-1423.
[12] Wang Q, Chen Y, Zhang Y X, et al. Optimal control theory, method and applications[M]. Beijing: Higher Education Press, 2011: 6 (in Chinese). 王青, 陈宇, 张颖昕, 等. 最优控制理论、方法与应用[M]. 北京: 高等教育出版社, 2011: 6.
[13] Jiang F H, Baoyin H X, Li J F. Practical techniques for low-thrust trajectory optimization with homotopic approach[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(1): 245-257.
[14] Elnagar J, Kazemi M A, Razzaghi M. The pseudospectral Legendre method for discretizing optimal control problems[J]. IEEE Transactions on Automatic Control, 1995, 40(10): 1793-1796.
[15] Yao Y W, Li H B. The generation of three-dimensional constrained entry trajectories for hypersonic vehicle based on the Gauss pseudospectral method[J]. Aerospace Control, 2012, 30(2): 33-38 (in Chinese). 姚寅伟, 李华滨. 基于Gauss伪谱法的高超声速飞行器多约束三维再入轨迹优化[J]. 航天控制, 2012, 30(2): 33-38.
[16] Benson D. Gauss pseudospectral transcription for optimal control[D]. Cambridge: Massachusetts Institute of Technology, 2005.
[17] Mehrpouya M A, Shamsi M, Azhmyakov V. An efficient solution of hamiltonian boundary value problems by combined gauss pseudospectral method with differential continuation approach[J]. Journal of the Franklin Institute, 2014, 351(10): 4765-4785.
[18] Houacine M, Khardi S. Gauss pseudospectral method for less noise and fuel consumption from aircraft operations[J]. Journal of Aircraft, 2010, 47(6): 2152-2159.
[19] Zhang L, Gao H, Chen Z, et al. Multi-objective global optimal parafoil homing trajectory optimization via Gauss pseudospectral method[J]. Nonlinear Dynamics, 2013, 72(1): 1-8.
[20] Zhang Y, He X. Optimal orbital transfer with finite thrust based on Gauss pseudospectral method[J]. Multidiscipline Modeling in Materials and Structures, 2010, 6(3): 399-409.

Outlines

/