Solid Mechanics and Vehicle Conceptual Design

Influence of blade tip clearance on blade aerodynamic damping in transonic compressor

  • YANG Xiaodong ,
  • HOU Anping ,
  • LI Manlu ,
  • NI Qifeng
Expand
  • 1. National Key Laboratory of Science and Technology on Aero-Engines Aero-thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191, China;
    2. AVIC Academy of Aeronautic Propulsion Technology, Beijing 101304, China

Received date: 2014-06-09

  Revised date: 2014-12-19

  Online published: 2015-03-11

Supported by

National Natural Science Foundation of China (11290140, 50906001)

Abstract

Based on transonic compressor flutter test rotor, an efficient aerodynamic damping computational model using phased lagged boundary conditions is established to analyze the influence of blade tip clearance on compressor flow field and aerodynamic damping. Numerical results of rotor aerodynamic performance, blade mode and flutter boundary analysis with design tip clearance are closely consistent with the experimental results. The rotor aerodynamic performances with different tip clearances (1.6%, 3.2% and 5.0% tip chord) show that tip flows can significantly reduce the total pressure ratio and efficiency of rotor. Unsteady pressure results on blade surface indicate that the unsteady flow response is a strong three-dimensional nature. Inter-blade phase angle (IBPA) and tip clearance are crucial factors influencing blade surface unsteady pressure. The first harmonic pressure amplitude in blade tip region which is associated with blade vibration relatively weakens due to the enhancement of blade tip flow with the increase of blade tip clearance. The stability of pressure surface tends to worsen due to increasing blade tip clearance. However, the influence of blade tip clearance on suction surface depends on inter-blade phase angle. The influence of blade tip clearance on blade aerodynamic damping has significant differences at different inter-blade phase angle, even an inverse relationship. Specifically, the aerodynamic damping is enhanced with increasing blade tip clearance at the least stable inter-blade phase angle.

Cite this article

YANG Xiaodong , HOU Anping , LI Manlu , NI Qifeng . Influence of blade tip clearance on blade aerodynamic damping in transonic compressor[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(6) : 1885 -1895 . DOI: 10.7527/S1000-6893.2015.0039

References

[1] Smith L H, Jr. The effect of tip clearance on the peak pressure rise of axial-flow fans and compressors[C]//ASME Symposium on Stall, 1958: 149-152.
[2] Smith L H, Jr. Casing boundary layers in multistage axial flow compressors[J]. Flow Research on Blading, 1970, 106: 635-647.
[3] Kazutoyo Y, Hiroaki K, Masato F. et al. Effects of tip clearance on the stall inception process in an axial compressor rotor, ASME Paper, GT2013-95479[R]. New York: ASME, 2013.
[4] Kang S, Hirsch C. Experimental study on the three-dimensional flow within a compressor cascade with tip clearance: Part 1-velocity and pressure fields[J]. Journal of Turbomachinery, 1993, 115(3): 435-443.
[5] Bell D L, He L. Three-dimensional unsteady flow for an oscillating turbine blade and the influence of tip leakage [J]. Journal of Turbomachinery, 2000, 122(1): 93-101.
[6] Norryd M, Bölcs A. Experimental investigation of unsteady pressure behaviors in a linear turbine cascade[C]//The 8th International Symposium on Unsteady Aerodynamics and Aeroelasticity of Turbomachines, 1997.
[7] Sanders A J, Hassan K K, Rade D C. Experimental and numerical study of stall flutter in a transonic low-aspect ratio fan blisk[J]. Journal of Turbomachinery, 2004, 126(1): 166-174.
[8] Huang X Q, He L, Bell D L. Effects of tip clearance on aerodynamic damping in a linear turbine cascade [J]. Journal of Propulsion and Power, 2008, 24(1): 26-33.
[9] Yang H, He L, Wang Y R. Experimental study on aeroelasticity in linear oscillating compressor cascade: partII-tip-clearance effect[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 804-810 (in Chinese). 杨慧, 何力, 王延荣. 压气机线性振荡叶栅气弹实验研究(二): 叶尖间隙的影响[J]. 航空学报, 2008, 29(4): 804-810.
[10] Carta F O. Coupled blade-disk-shroud flutter instabilities in turbojet engine rotors[J]. Journal of Engineering for Power, 1967, 89(3): 419-427.
[11] Bendiksen O O. Aeroelastic problems in turbomachines, AIAA-1990-1157[R]. Reston: AIAA, 1990.
[12] Cinnella P, de Palma P, Pascazio G, et al. A numerical method for turbomachinery aeroelasticity[J]. Journal of Turbomachinery-Transactions of ASME, 2004, 126(2): 310-316.
[13] Srivastava R, Bakhle M A, Keith T G, et al. Aeroelastic analysis of turbomachinery PartII-Stability computations[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2004, 14(3): 382-402.
[14] Zhang W W, Su D, Zhang C A, et al. A CFD-based compositional methodology of unsteady aerodynamic modeling for turbomachinery[J]. Journal of Propulsion Technology, 2012, 33(1): 37-42 (in Chinese). 张伟伟, 苏丹, 张陈安, 等. 一种基于CFD的叶轮机非定常气动力组合建模方法[J]. 推进技术, 2012, 33(1): 37-42.
[15] Zheng Y, Wang J. Influence of frequency mistuning on aeroelastic stability of blade[J]. Journal of Aerospace Power, 2013, 28(5): 1029-1036 (in Chinese). 郑赟, 王静. 错频对叶片的气动弹性稳定性影响[J]. 航空动力学报, 2013, 28(5): 1029-1036.
[16] Erdos J I, Alzner E, McNall W. Numerical solution of periodic transonic flow through a fan stage[J]. AIAA Journal, 1977, 15(11): 1559-1568.
[17] He L. An Euler solution for unsteady flows around oscillating blades[J]. Journal of Turbomachinery, 1990, 112(4): 714-722.
[18] He L, Denton J D. Three-dimensional time marching inviscid and viscous solutions for unsteady flows around vibrating blades[J]. Journal of Turbomachinery, 1994, 116(3): 469-476.
[19] Hwang C J, Fang J M. Flutter analysis of cascades using an Euler/Navier-Stokes solution-adaptive approach[J]. Journal of Propulsion and Power, 1999, 15(1): 54-63.
[20] Sadeghi M, Liu F. Computation of cascade flutter by uncoupled and coupled Methods [J]. International Journal of Computational Fluid Dynamics, 2005, 19(8): 559-569.
[21] Debrabandere F, Tartinville B, Hirsch C H, et al. Fluid-structure interaction using a modal approach, ASME Paper, 2011-GT-45692[R]. New York: ASME, 2011.
[22] Yang Q Z, Xiao J, Zhou X H. Cascade flutter investigation base on flow-structure coupling unsteady flow[J]. Journal of Propulsion Technology, 2005, 26(6): 526-530 (in Chinese). 杨青真, 肖军, 周新海.基于气/固耦合非定常流动的叶栅颤振分析[J]. 推进技术, 2005, 26(6): 526-530.
[23] Quan J L, Zhang W W, Su D, et al. Flutter analysis of turbomachinery cascades based on coupled CFD/CSD method[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2019-2028 (in Chinese). 全金楼, 张伟伟, 苏丹, 等. 基于CFD/CSD 时域耦合方法的多通道叶栅颤振分析[J]. 航空学报, 2013, 34(9): 2019-2028.
[24] Feng Y C, Hu Z A, Zhao X H, et al. Experimental investigation on flow induce vibration in axial flow compressors[J]. Journal of Beijing Institute of Aeronautics and Astronautics, 1986(4): 103-111 (in Chinese). 冯毓诚, 胡宗安, 赵秀华, 等. 轴流压气机流体诱发振动的实验研究[J]. 北京航空学院学报, 1986(4): 103-111.
[25] Elder R, Woods I, Patil S, et al. Investigation of efficient CFD methods for the prediction of blade damping, ASME Paper, GT2013-95005[R]. New York: ASME, 2013.
[26] Yang X D, Hou A P, Li M L, et al. Flutter prediction of turbomachinery based on phase lagged boundary condition[J]. Journal of Aerospace Power, 2014, 29(8): 1846-1854 (in Chinese). 杨晓东, 侯安平, 李漫露, 等. 相位延迟条件在叶轮机械颤振分析中的应用[J]. 航空动力学报, 2014, 29(8): 1846-1854.

Outlines

/