Electronics and Control

Antennas structures effect on capacity of UAV-MIMO channel

  • GAO Xijun ,
  • CHEN Zili
Expand
  • Department of UAV Engineering, Ordnance Engineering College, Shijiazhuang 050003, China

Received date: 2014-09-22

  Revised date: 2015-02-21

  Online published: 2015-03-05

Supported by

National Defense Pre-research Project (51325030202)

Abstract

The effect of the structure parameters such as antennas' distance and array of unmanned aerial vehicle-multiple input multiple output (UAV-MIMO) was analyzed for the improvement of the transmission capacity of the UAV telemetering link. And the three-dimensional geometrically based single bounce concentric elliptic ring scattering (GBSBCERS) channel model of UAV-MIMO was set up. Furthermore, the formula of UAV-MIMO correlation matrix and ergodic capacity was given combined with the layout scheme of airborne MIMO. The simulation results show that the UAV-MIMO channel capacity will increase along with the increase of antenna distance with the influence of UAV remote communication, and though the circular array layout is affected by the change of UAV attitude, it improves the channel capacity more significantly than linear array layout. The research of the influence of antennas structures on the UAV-MIMO channel capacity shows a practical significance in application on high-speed UAV data line design.

Cite this article

GAO Xijun , CHEN Zili . Antennas structures effect on capacity of UAV-MIMO channel[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(10) : 3401 -3410 . DOI: 10.7527/S1000-6893.2015.0050

References

[1] Gao J J, Zhang J H, Tao X F. Mutual information assessment of LOS MIMO systems with reconfigurable antenna arrays[J]. The Journal of China Universities of Posts and Telecommunications, 2013, 20(5): 51-56.
[2] Jin Z G, Gao M, Chen Z. Multi-input multi-output channel spatial correlation and channel capacity[J]. Chinese Journal of Radio Science, 2012, 27(5): 1019-1029 (in Chinese). 金志刚, 高铭, 陈喆. 多输入多输出信道容量研究及天线优化[J]. 电波科学学报, 2012, 27(5): 1019-1029.
[3] Parshin Y N, Kharin A V. Capacity of the MIMO communication channel with UAV with different configurations of antenna systems[C]//IEEE International Crimean Conference on Microwave & Telecommunication Technology. Piscataway, NJ: IEEE Press, 2013: 252-253.
[4] Romeu J, Aguasca A, Alonso J, et al. Small UAV radio communication channel characterization[C]//Proceedings of the 4th IEEE European Conference on Antennas and Propagation. Piscataway, NJ: IEEE Press, 2010: 1-5.
[5] Lin C K, Kung H T, Lin T H, et al. Achieving high throughput around-to-UAV transport via parallel links[C]//Proceedings of the 20th IEEE International Conference on Computer Communications and Networks. Piscataway, NJ: IEEE Press, 2011: 1-7.
[6] Zhan P C, Kai Y, Swindlehurst A L. Wireless relay communications with unmanned aerial vehicles: Performance and optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(3): 2069-2085.
[7] Feng J, Swindlehurst A L. Dynamic UAV relay positioning for the ground-to-air uplink[C]//IEEE Globecom Workshops. Piscataway, NJ: IEEE Press, 2010: 1766-1770.
[8] Stabler O, Hoppe R. MIMO channel capacity computed with 3D ray tracing model[C]//Proceedings of IEEE European Conference on Antennas and Propagation. Piscataway, NJ: IEEE Press, 2009: 2271-2275.
[9] Bhagavatula R, Oestges C, Heath R W. A new double-directional channel model including antenna patterns, array orientation and depolarization[J]. IEEE Transactions on Vehicular Technology, 2010, 59(5): 2219-2231.
[10] Liu L F, Poutanen J, Quitin F, et al. The COST 2100 MIMO channel model[J]. IEEE Wireless Communications, 2012, 19(6): 92-99.
[11] Zhu M F, Eriksson G. The COST 2100 channel model: Parameterization and validation based on outdoor MIMO measurements at 300 MHz[J]. IEEE Transactions on Wireless Communications, 2013, 12(2): 888-897.
[12] Hu Y J, Li X M. Investigation on MIMO wideband channel model for unmanned aerial vehicle with non-omnidirectional antennas[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 1092-1101 (in Chinese). 胡永江, 李小民. 基于非全向天线的无人机MIMO信道模型研究[J]. 航空学报, 2011, 32(6): 1092-1101.
[13] You G H, Qiu T S, Xia N, et al. Novel extended cyclic MUSIC algorithm based on uniform circular array[J]. Journal on Communications, 2014, 35(2): 9-15 (in Chinese). 尤国红, 邱天爽, 夏楠, 等. 基于均匀圆阵的扩展循环MUSIC算法[J]. 通信学报, 2014, 35(2): 9-15.
[14] Wu Z B, Zhu Y T, Su Y, et al. MIMO array design for airborne linear array 3D SAR imaging[J]. Journal of Electronics & Information Technology, 2013, 35(11): 2672-2677 (in Chinese). 吴子斌, 朱宇涛, 粟毅, 等. 用于机载线阵三维SAR成像的MIMO阵列构型设计[J]. 电子与信息学报, 2013, 35(11): 2672- 2677.
[15] Zhou J, Chen J F, Qiu L, et al. Effect of mutual coupling and antenna correlation on MIMO system in three-dimensional spatial channel models[J]. Journal on Communications, 2012, 33(6): 1-10 (in Chinese). 周杰, 陈靖峰, 邱琳, 等. 三维空间MIMO信道接收天线阵列互耦效应及系统容量分析[J]. 通信学报, 2012, 33(6): 1-10.
[16] Jin S, Zhang X L, Zhou Q. A statistical model for the UAV communication channel[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(1): 62-65 (in Chinese). 金石, 张晓林, 周琪. 无人机通信信道的统计模型[J]. 航空学报, 2004, 25(1): 62-65.
[17] Li Y H, Lyu T J, Wu X F, et al. On the bounds of frequency-selective channel capacity with doubly correlated geometrical MIMO channel model[J]. The Journal of China Universities of Posts and Telecommunications, 2010, 17(2): 8-13.
[18] Abdi A, Barger J A, Kaveh M. A parametric model for the distribution of the angle of arrival and the associated correlation function and power spectrum at the mobile station[J]. IEEE Transactions on Vehicular Technology, 2002, 51(3): 425- 434.
[19] Qu S, Yeap T. A three-dimensional scattering model for fading channels in land mobile environment[J]. IEEE Transactions on Vehicular Technology, 1999, 48(5): 765-781.
[20] Lyu J G, Lyu Y H, Li Y Z. Antenna array structures effect on capacity of indoor NLOS MIMO channel[J]. Journal of Electronics & Information Technology, 2006, 28(9): 1636-1639 (in Chinese). 吕剑刚, 吕英华, 李云庄, 等. 天线阵结构对非视距室内MIMO信道容量的影响[J]. 电子与信息学报, 2006, 28(9): 1636-1639.

Outlines

/