ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Transition model for predicting crossflow instabilities
Received date: 2014-07-29
Revised date: 2014-10-13
Online published: 2015-03-04
Supported by
National Basic Research Program of China (2014CB744804)
As the γ-Reθt boundary layer transition model proposed by Langtry and Menter could only predict the transition along the streamwise, it is necessary to develop a γ-Reθt transition model so that it could conduct the numerical simulation of crossflow instabilities transition. With the theoretical analysis and numerical solution of Falkner-Skan-Cooke (FSC) three-dimensional boundary layer, combining the Thwaites pressure gradient factor with local swept angle to build the relationships for solving the Hartree pressure gradient factor βH and the shape factor H12, using the C1 criterion calibrated by the test data to get the crossflow instabilities transition displacement thickness Reynolds number, the crossflow transition criterion is established for complex configuration by solving the equations and data fitting. The model has been applied to conducting the numerical simulation of crossflow instabilities transition on the ONERA-M6 wing with 30° swept angle of leading edge, the DLR-F5 wing with variational swept angle of leading edge and the 6:1 prolate spheroids standard model. The numerical results show that the improved transition model could predict the location of crossflow instabilities transition of swept wing in good agreement with the test data. Therefore, the results indicate that the crossflow instabilities transition criterion built is reasonable and practical.
XU Jiakuan , BAI Junqiang , QIAO Lei , HUANG Jiangtao , SHI Yayun . Transition model for predicting crossflow instabilities[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(6) : 1814 -1822 . DOI: 10.7527/S1000-6893.2015.0062
[1] Lee C B, Wu J Z. Transition in wall-bounded flows[J]. Applied Mechanics Reviews, 2008, 61(3): 030802.
[2] Menter F R, Langtry R B, Likki S R, et al. A correlation-based transition model using local variables—Part Ⅰ: model formulation[J]. Journal of Turbomachinery, 2006, 128(3): 413-422.
[3] Langtry R B, Menter F R, Likki S R, et al. A correlation-based transition model using local variables—Part Ⅱ: test cases and industrial applications[J]. Journal of Turbomachinery, 2006, 128(3): 423-434.
[4] Langtry R B. A correlation-based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart: Stuttgart University, 2006.
[5] Langtry R B, Menter F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12): 2894-2906.
[6] Meng D H, Zhang Y L, Wang G X, et al. Application of γ-Reθt transition model to two-dimensional low speed flows[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 792-801(in Chinese). 孟德虹, 张玉伦, 王光学, 等. γ-Reθt转捩模型在二维低速问题中的应用[J]. 航空学报, 2011, 32(5): 792-801.
[7] Wang G, Liu Y, Wang G Q, et al. Transitional flow simulation based on γ-Reθt transition model[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 70-79 (in Chinese). 王刚, 刘毅, 王光秋, 等. 采用γ-Reθt模型的转捩流动计算分析[J]. 航空学报, 2014, 35(1): 70-79.
[8] Xu G L. Instability of three-dimensional boundary layers and modeling Bypass transition[D]. Beijing: Tsinghua University, 2011 (in Chinese). 徐国亮. 三维边界层流动失稳与Bypass转捩模式研究[D]. 北京: 清华大学, 2011.
[9] Xu G L, Fu S, The instability and control of compressible cross flows[J]. Advances in Mechanics, 2012, 42(3): 263-273 (in Chinese). 徐国亮, 符松. 可压缩横流失稳及其控制[J]. 力学进展, 2012, 42(3): 263-273.
[10] Xu J K, Bai J Q, Qiao L, et al. Study of prediction model of cross-flow instability in swept wing boundary layers[J]. Journal of Aerospace Power, 2015, 30(4): 927-935 (in Chinese). 徐家宽, 白俊强, 乔磊, 等. 后掠翼横流不稳定性转捩预测模型研究[J]. 航空动力学报, 2015, 30(4): 927-935.
[11] Seyfert C, Krumbein A. Correlation-based transition transport modeling for three-dimensional aerodynamic configurations, AIAA-2012-0448[R]. Reston: AIAA, 2012.
[12] Choi J H, Kwon O J. Enhancement of a correlation-based transition turbulence model for simulating crossflow instability, AIAA-2014-1133[R]. Reston: AIAA, 2014.
[13] Medida S, Baeder J D. A new crossflow transition onset criterion for RANS turbulence models, AIAA-2013-3081[R]. Reston: AIAA, 2013.
[14] Cooke J C. The boundary layer of a class of infinite yawed cylinders[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1950, 46(4): 645-648.
[15] Hogberg M, Henningson D. Secondary instability of cross-flow vortices in Falkner-Skan-Cooke boundary layers[J]. Journal of Fluid Mechanics, 1998, 368(2): 339-357.
[16] Zhang Z X, Dong Z N. Viscous fluid dynamics[M]. Beijing: Tsinghua University Press, 1998: 129-134 (in Chinese). 章梓雄, 董曾南. 粘性流体力学[M]. 北京: 清华大学出版社, 1998: 129-134.
[17] van den Berg B. A three-dimensional law of the wall for turbulent shear flows[J]. Journal of Fluid Mechanics, 1975, 70(1): 149-160.
[18] Arnal D, Habiballah M, Coutols E. Theory of laminar instability and transition criteria in two and three dimensional flow[J].The Aerospace Research, 1984, 33(2): 125-143 (in French). Arnal D, Habiballah M, Coutols E. Théorie de l'instabilité laminaire et critéres de transition en éncoulement bi et tridimensionnel[J]. La Recherche Aérospatiale, 1984, 33(2): 125-143.
[19] Yan C. Computational fluid dynamics and its application[M]. Beijing: Beihang University Press, 2006: 17-243 (in Chinese). 阎超. 计算流体力学方法及应用[M]. 北京: 北京航空航天大学出版社, 2006: 17-243.
[20] Schmitt V, Monneris B, Dorey G, et al. Study of three-dimensional boundary layer on a swept wing, ONERA 14/1713-AN[R]. 1975 (in French). Schmitt V, Monneris B, Dorey G, et al. Etude de lacouche limite tridimensionnelle sur une aile en flèche, ONERA 14/1713-AN[R]. 1975.
[21] Sobieczky H. DLR-F5: test wing for CFD and applied aerodynamics, AGARD FDP AR 303[R]. 1994.
[22] Kreplin H P, Vollmers H, Meier H U. Wall shear stress measurements on an inclined prolate spheroid in the DFVLR 3 m×3 m low speed wind tunnelttingen[R]. 1985.
[23] Krimmelbein N, Krumbein A. Automatic transition prediction for three-dimensional configurations with focus on industrial application, AIAA-2014-1133[R]. Reston: AIAA, 2014.
/
〈 | 〉 |