Electronics and Control

DOA model and tracking for Gaussian non-stationary maneuvering targets

  • YU Xiang ,
  • ZHANG Jianqiu
Expand
  • Department of Electronic Engineering, Fudan University, Shanghai 200433, China

Received date: 2014-11-26

  Revised date: 2015-01-13

  Online published: 2015-01-30

Supported by

National Natural Science Foundation of China (61171127)

Abstract

In practical applications, due to the variation of environment, radar cross section and other variable factors, the echo power changes over time, which is inconsistent with the stationary assumption of Gaussian signals in the general array signal processing. To address the tracking problem of Gaussian non-stationary maneuvering targets with complex movements, a new direction-of-arrival (DOA) model is proposed. This model captures the dynamic state of Gaussian non-stationary maneuvering targets completely, considering the DOA and signal power as a joint state vector. Meanwhile, this model utilizes virtual array representing method and constructs the observation equation accordingly. Finally, the unscented Kalman filter (UKF) algorithm is used to complete the whole tracking process. Both analyses and simulation results show that the new method is still able to achieve good tracking performance when the Gaussian non-stationary maneuvering targets are close to each other for a long time.

Cite this article

YU Xiang , ZHANG Jianqiu . DOA model and tracking for Gaussian non-stationary maneuvering targets[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(10) : 3430 -3438 . DOI: 10.7527/S1000-6893.2015.0019

References

[1] Johnson D H, Dudgeon D E. Array signal processing-concepts and techniques[M]. Englewood Cliffs, NJ: Prentice-Hall, 1993: 424-467.
[2] Sword C K, Simaan M, Kamen W W. Multiple target angle tracking using sensor array output[J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(2): 367-372.
[3] Park S B, Ryu C S, Lee K K. Multiple target tracking algorithm using predicted angles[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(2): 643-648.
[4] Picinbono B. Random signals and systems[M]. Englewood Cliffs, NJ: Prentice-Hall, 1993: 177-180.
[5] Gan H D, Li Z S, Li L, et al. Algorithm for DOA tracking based on adaptive subspace estimation[J]. Technical Acoustics, 2004, 23(4): 214-217 (in Chinese). 淦华东, 李志舜, 李乐, 等. 基于自适应子空间估计的DOA跟踪算法[J]. 声学技术, 2004, 23(4): 214-217.
[6] Ryu C S, Lee S H, Lee K K. Multiple target angle tracking algorithm using innovation extracted from signal subspace[J]. Electronics Letters, 1999, 35(18): 1520-1522.
[7] Javier S A, Sylvie M. An efficient PASTd-algorithm implementation for multiple direction of arrival tracking[J]. IEEE Transactions on Signal Processing, 1999, 47(8): 2321-2324.
[8] Valizadeh A, Karimi M, Oliaei O. An efficient algorithm for multiple direction of arrival tracking based on the constrained projection approximation approach and kalman filter[C]//ICASSP2007. Piscataway, NJ: IEEE Press, 2007: 1089-1092.
[9] Hou S Y, Wu C S, Hung H S, et al. Improved tracking algorithm for multiple targets[C]//OCEANS-MTS/IEEE Kobe Techno-Ocean. Piscataway, NJ: IEEE Press, 2008: 1-4.
[10] Chonavel T, Champagne B, Riou C. Fast adaptive eigenvalue decomposition: A maximum likelihood approach[J]. Signal Processing, 2003, 83: 307-324.
[11] Yang B. Projection approximation subspace tracking[J]. IEEE Transactions on Signal Processing, 1995, 43(1): 95-107.
[12] Badeau R, Abed-Meraim K, Richard G, et al. Sliding window orthonormal PAST algorithm[C]//ICASSP2003. Piscataway, NJ: IEEE Press, 2003: 261-264.
[13] Dogan M C, Mendel J M. Applications of cumulants to array processing—Part I: Aperture extension and array calibration[J]. IEEE Transactions on Signal Processing, 1995, 43(5): 1200-1216.
[14] Chevalier P, Ferreol A. On the virtual array concept for the fourth-order direction finding problem[J]. IEEE Transactions on Signal Processing, 1999, 47(9): 2592-2595.
[15] Hartikainen J, Solin A, Sarkka S. Optimal filtering with kalman filters and smoothers: A manual for the matlab toolbox EKF/UKF[M]. Espoo: Aalto University, 2011: 26-33.
[16] Kong D, Chun J. A fast DOA tracking algorithm based on the extended Kalman filter[C]//NAECON 2000. Piscataway, NJ: IEEE Press, 2000: 235-238.
[17] Moffet A. Minimum-redundancy linear arrays[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(2): 172-175.
[18] Pal P, Vaidyanathan P P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167-4181.
[19] Pal P, Vaidyanathan P P. Coprime sampling and the MUSIC algorithm[C]//The 14th IEEE DSP Workshop. Piscataway, NJ: IEEE Press, 2011: 289-294.
[20] Pan J, Zhou J J, Wang F. 2-D DOA estimation for sparse uniform circular array in presence of unknown nonuniform noise[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3): 448-456 (in Chinese). 潘捷, 周建江, 汪飞. 非均匀噪声稀疏均匀圆阵的二维DOA估计[J]. 航空学报, 2011, 32(3): 448-456.
[21] Schmidt R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280.
[22] Zhang H M, Deng Z L, Lin Y R. UKF method based on model error prediction[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(6): 598-601 (in Chinese). 张红梅, 邓正隆, 林玉荣. 一种基于模型误差预测的UKF方法[J]. 航空学报, 2004, 25(6): 598-601.

Outlines

/