Aerodynamics and Others

Analysis of flow characteristics for hypersonic vehicle

  • WU Ziniu ,
  • BAI Chenyuan ,
  • LI Juan ,
  • CHEN Zijun ,
  • JI Shixiang ,
  • WANG Dan ,
  • WANG Wenbin ,
  • XU Yizhe ,
  • YAO Yao
Expand
  • School of Aerospace, Tsinghua University, Beijing 100084, China

Received date: 2014-07-24

  Revised date: 2014-09-30

  Online published: 2015-01-24

Supported by

National Natural Science Foundation of China(90716009); National Basic Research Program of China (2012CB720205)

Abstract

Modern hypersonic vehicles have local non-streamlined obstacles, operate at lower turbulent environment with high Mach number and lower Reynolds number and cruise in air subjected to shock and friction heating. Due to these factors, hypersonic flows are full of strong local flow structures such as strong shock waves and thick boundary layers, with severe interactions between them. Aerodynamic heating is strengthened locally by such interactions. A number of critical phenomena such as transition and pressure perturbations are quite sensitive and the competitive influences of wave and frictional drags make the lift to drag ratio have a barrier. All these are not simply dependent on the Mach number and Reynolds number, but also dependent on many dimensional parameters, so that modelling by ground facilities is difficult and a combined study of theory, numerical study and experimental measurement are necessary to solve an engineering problem. In this paper, we give an overview of the state-of-art knowledge of the most important and critical physics of hypersonic flow and discuss the methods to solve hypersonic flow problems in the most possible effective way.This review and discussion are hopefully useful for further fundamental studies and for providing a bridge between fundamental study and engineering applications.

Cite this article

WU Ziniu , BAI Chenyuan , LI Juan , CHEN Zijun , JI Shixiang , WANG Dan , WANG Wenbin , XU Yizhe , YAO Yao . Analysis of flow characteristics for hypersonic vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(1) : 58 -85 . DOI: 10.7527/S1000-6893.2014.0228

References

[1] Oswatitsch K. Similarity laws for hypersonic flow[J]. Royal Institute of Technology, 1950, 2: 249-264.



[2] Kliche D, Mundt C H, Hirschel E H. The hypersonic Mach number independence principle in the case of viscous flow[J]. Shock Waves, 2011, 21(4): 307-314.



[3] Anderson J D. Hypersonic and high temperature gas dynamics[M]. New York: McGraw-Hill Book Company, 1989.



[4] Bertin J J, Cummings R M. Fifty years of hypersonics: where we've been, where we're going[J]. Progress in Aerospace Sciences, 2003, 39(6-7): 511-536.



[5] Bertin J J, Cummings R M. Critical hypersonic aerothermodynamic phenomena[J]. Annual Review of Fluid Mechanics, 2006, 38: 129-157.



[6] Reshotko E, Tumin A. The blunt body paradox—a case for transient growth[M]//Fasel H F, Saric W S. Laminar-turbulent transition. Heidelberg: Springer, 2000: 403-408.



[7] Hirschel E H, Weiland C. Selected aerothermodynamic design problems of hypersonic flight vehicles[M]. Heidelberg: Springer-Verlag, 2009.



[8] Kuchemann D. The aerodynamic design of aircraft: a detailed introduction to the current aerodynamic knowledge and practical guide to the solution of aircraft design problems[M]. Oxford: Pergamon Press, 1978.



[9] Corda S, Anderson J. Viscous optimized waveriders designed from axisymmetric flow fields, AIAA-1988-0369[R]. Reston: AIAA, 1998.



[10] Stollery J L. Viscous interaction effects and re-entry aerothermodynamics: theory and experimental results[M]//Aerodynamic problems of hypersonic vehicles. 1972, 42: 191-1028.



[11] Nonweiller T R F. Aerodynamic problems of manned space vehicles[J]. Journal of the Royal Aeronautical Society, 1959, 63(4): 521-528.



[12] Bushnell D A. Shock wave drag reduction[J]. Annual Review of Fluid Mechanics, 2004, 36: 81-96.



[13] Xu Y Z, Xu Z Q, Li S G, et al. A hypersonic lift mechanism with decoupled lift and drag surfaces[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(5): 981-988.



[14] Lockwood M K, Petley D H, Martin J G, et al. Airbreathing hypersonic vehicle design and analysis methods and interactions[J]. Progress in Aerospace Sciences, 1999, 35(1): 1-32.



[15] Brandeis J, Gill J. Experimental investigation of side-jet steering for supersonic and hypersonic missiles[J]. Journal of Spacecraft and Rockets, 1996, 33(3): 346-352.



[16] Gulhan A, Schutte G, Stahl B. Experimental study on aerothermal heating caused by jet-hypersonic crossflow interaction[J]. Journal of Spacecraft and Rockets, 2008, 45(5): 891-899.



[17] Tong B G, Kong X Y, Deng G H. Gasdynamics[M]. Beijing: High Education Press, 1989 (in Chinese). 童秉纲, 孔祥言, 邓国华. 气体动力学[M]. 北京: 高等教育出版社, 1989.



[18] Josyula E, Pinney M, Blake W B. Applications of a counterflow drag reduction technique in high speed systems, AIAA-2001-2437[R]. Reston: AIAA, 2001.



[19] Bracken R M, Hartley C S, Myrabo L N. Experimental and computational parametric drag study of an‘airspike’in hypersonic flow, AIAA-2002-3784[R]. Reston: AIAA, 2002.



[20] Ben-dor G. Shock wave reflection phenomena[M]. Israel: Springer, 2007.



[21] Ben-dor G, Ivanov M, Vasiliev E I, et al. Hysteresis processes in the regular reflection↔Mach reflection transition in steady flows[J]. Progress in Aerospace Science, 2002, 38(4-5): 347-387.



[22] Li S G, Gao B, Wu Z N. Time history of regular to Mach reflection transition in steady supersonic flow[J]. Journal of Fluid Mechanics, 2011, 682: 160-184.



[23] Edney B. Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock, No. FFA-115[R]. 1968.



[24] Hans F D, Keyes J W. Shock interference heating in hypersonic flows[J]. AIAA Journal, 1972, 10(11): 1441-1447.



[25] Gaitonde D, Shang J S. On the structure of an unsteady type Ⅳ interaction at Mach 8[J]. Computer & Fluids, 1995, 24(4): 469-485.



[26] George E K. A method for predicting shock shapes and pressure distributions for a wide variety of blunt bodies at zero angle of attack, NASA TN D4539[R]. Washington, D.C.: NASA, 1968.



[27] Tan L H, Ren Y X, Wu Z N. Analytical and numerical study of the near flow field and shape of the Mach stem in steady flows[J]. Journal of Fluid Mechanics, 2006, 546(1): 341-362.



[28] Maslov A A. Hypersonic boundary layer transition and control[M]. Netherlands: Springer, 2010.



[29] Schneider S P. Flight data for boundary-layer transition at hypersonic and supersonic speeds[J]. Journal of Spacecraft and Rockets, 1999, 36(1): 8-20.



[30] Malik M R. Prediction and control of transition in supersonic and hypersonic boundary layers[J]. AIAA Journal, 1989, 27(11): 1487-1493.



[31] Hu R F, Wu Z N, Wu Z, et al. Aerodynamic map for soft and hard hypersonic level flight in near space[J]. Acta Mechanica Sinica, 2009, 25(4): 571-575.



[32] Babinsky H, Harvey J K. Shock wave-boundary-layer inter-actions[M]. New York: Cambridge University Press, 2011.



[33] Gaitonde D V. Progress in shockwave/boundary layer interactions, AIAA-2013-2607[R]. Reston: AIAA, 2013.



[34] Panaras A G. Review of the physics of swept-shock/boundary layer interactions[J]. Progress in Aerospace Sciences, 1996, 32(2-3): 173-244.



[35] Dolling D S. Fifty years of shock-wave/boundary-layer interaction research: what next?[J]. AIAA Journal, 2001, 39(8): 1517-1531.



[36] Clemens N T, Narayanaswamy V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review Fluid Mechanics, 2014, 46: 469-492.



[37] Zheltovodov A A. Shockwaves/turbulent boundary-layer interactions-fundamental studies and applications, AIAA-1996-1977[R]. Reston: AIAA, 1996.



[38] Délery J, Dussauge J P. Some physical aspects of shock wave/boundary layer interactions[J]. Shock Waves, 2009, 19(6): 453-468.



[39] Li S X. Complex flow controlled by shock waves and boundary layers[M]. Beijing: Science Press, 2007 (in Chinese). 李素循. 激波与边界层主导的复杂流动[M]. 北京: 科学出版社, 2007.



[40] Humble R A, Scarano F, van Oudheusden B W. Unsteady aspects of an incident shock wave/turbulent boundary layer interaction[J]. Journal of Fluid Mechanics, 2009, 635: 47-74.



[41] Chen W F, Zhang Z C, Shi Y Z, et al. The prediction of fluctuating pressure on the surface of reentry vehicles[J]. Journal of National University of Defense Technology, 2001, 23(6): 20-23 (in Chinese). 陈伟芳, 张志成, 石于中, 等. 再入体表面脉动压力环境的预测[J]. 国防科技大学学报, 2001, 23(6): 20-23.



[42] Plotkin K J, Roberson J E. Prediction of space shuttle fluctuating pressure environments, including rocket plume effects, NASA N73-29885, NASA-CR-124347[R]. Washington, D.C.: NASA, 1973.



[43] Yu K H, Trouve A, Daily J W. Low frequency pressure oscillations in a model ramjet combustor[J]. Journal of Fluid Mechanics, 1991, 232: 47-72.



[44] Tan C K W, Block P J W. On the tones and pressure oscillations induced by flow over rectangular cavities[J]. Journal of Fluid Mechanics, 1978, 89(2): 373-399.



[45] Rossiter J E. Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds, RAE Technical Report No. 6403[R]. 1964.



[46] Gao B,Wu Z N. A study of the flow structure for Mach reflection in steady supersonic flow[J]. Journal of Fluid Mechanics, 2010, 656: 29-50.



[47] van Driest E R. The problem of aerodynamic heating[J]. Aeronautical Engineering Review, 1956, 15(10): 26-41.



[48] Fay J A, Riddell F R. Theory of stagnation point heat transfer in dissociated air[J]. Journal of the Aeronautical Sciences, 1958, 25(2): 73-85.



[49] Hung F T, Barnett D O. Shock wave/boundary layer interference heating analysis, AIAA-1973-0237[R]. Reston: AIAA, 1973.



[50] Belouaggadia N, Olivier H, Brun R. Numerical and theoretical study of the shock stand-off distance in non-equilibrium flows[J]. Journal of Fluid Mechanics, 2008, 607: 167-197.



[51] Belouaggadia N, Takayama K, Brun R, et al. Shock layers over blunt and conical bodies in hypersonic non-equilibrium flow[J]. Shock Waves, 2010, 20(4): 333-338.



[52] Xu S S. Numerical simulation of flows for vehicle flying in the transitional regime[D]. Beijing: Tsinghua University, 2008 (in Chinese). 徐珊姝. 过渡区飞行器流场的数值模拟和计算方法研究[D]. 北京: 清华大学, 2008.



[53] Hu R F, Wu Z N, Wu Z, et al. Aerodynamic map for soft and hard hypersonic level flight in near space[J]. Acta Mechanica Sinica, 2009, 25(4): 571-575.



[54] Wang X X, Hu R F, Wu Z N. Analysis of special aerodynamic phenomena[J]. Nearspace Science and Technology, 2009, 1(1): 34-42 (in Chinese). 王晓欣, 胡锐锋, 吴子牛. 临近空间特殊气动问题分析[J]. 临近空间科学与工程, 2009, 1(1): 34-42.



[55] Wu Z N, Xu Y Z, Wang W B, et al. Review of shock wave detection method in CFD post-processing[J]. Chinese Journal of Aeronautics, 2013, 26(3): 501-513.



[56] Dalle D J, Fotia M L, Driscoll J F. Reduced-order modeling of two-dimensional supersonic flows with applications to scramjet inlets[J]. Journal of Propulsion and Power, 2010, 26(3): 545-555.



[57] Zhang Y S, Bi W T, Hussain F, et al. A generalized Reynolds analogy for compressible wall-bounded turbulent flows[J]. Journal of Fluid Mechanics, 2014, 739: 392-420.



[58] Zhang Y S, Bi W T, Hussain F, et al. Mach-number-invariant mean-velocity profile of compressible turbulent boundary layers[J]. Physical Review Letters, 2012, 109(5): 054502.



[59] Fu S, Wang L. RANS modeling of high-speed aerodynamic flow transition with consideration of stability theory[J]. Progress in Aerospace Sciences, 2013, 58: 36-59.



[60] Jiang Z, Xiao Z L, Shi Y P, et al. Constrained large-eddy simulation of wall-bounded compressible turbulent flows[J]. Physics of Fluids, 2013, 25(10): 106102.



[61] Hu R F, Wu Z N, Qu X, et al. Debris reentry and ablation prediction and ground risk assessment software system[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(3): 390-399 (in Chinese). 胡锐锋, 吴子牛, 曲溪, 等. 空间碎片再入烧蚀预测与地面安全评估软件[J]. 航空学报, 2011, 32(3): 390-399.



[62] Wang Z H, Bao L, Tong B G. Rarefaction criterion and non-Fourier heat transfer in hypersonic rarefied flows[J]. Physics of Fluids, 2010, 22(12): 126103.



[63] Wu Z N. Prediction of the size distribution of secondary ejected droplets by crown splashing of droplets impinging on a solid wall[J].Probabilistic Engineering Mechanics, 2003, 18(3): 241-249.



[64] Wang W B, Wu Z N, Wang C F, et al. Modelling the spreading rate of controlled communicable epidemics through an entropy-based thermodynamic model[J]. Science China Physics, Mechanics and Astronomy, 2013, 56 (11): 2143-2150.



[65] Wu Z N. The number e1/2 is the ratio between the time of maximum value and the time of maximum growth rate for restricted growth phenomena? [EB/OL]. http://arxiv.org/abs/1401.2400.pdf.



[66] Li J, Wu Z N. A note on restricted growth process with competitive production and dissipation mechanisms[J]. In preparation.



[67] Trinh K T. On the Karman constant[EB/OL]. http:// arxiv.org/pdf/1007.0605.pdf.



[68] Sreenivasan K R. On the universality of the Kolmogorov constant[J]. Physics of Fluids, 1995, 7(11): 2778-2784.

Outlines

/