ACTA AERONAUTICAET ASTRONAUTICA SINICA >
2D adaptive beamforming algorithm based on matrix completion
Received date: 2014-10-16
Revised date: 2015-01-17
Online published: 2015-01-23
Supported by
National Natural Science Foundation of China (61401204)
The two-dimensional (2D) adaptive beamforming based on matrix completion is considered, and a singular value threshold (SVT) based-eigenvalues decomposition linearly constrained minimum variance (SVT-ELCMV) algorithm is proposed. Firstly, a signal model of two-dimensional adaptive beamforming is established based on the matrix completion. And then, the received signal is proved to satisfy the null space property (NSP). Furthermore, the minimum number of array elements to recover the sparse matrices has been analyzed. Finally, the sparse signal is recovered to full signal by SVT algorithm and an effective beam is formed based on the modified LCMV algorithm. This algorithm overcomes the problem that the average sidelobes increases significantly in sparse array, and it keeps valid in the situation when some elements of the sparse array do not work. Computer simulation shows that the SVT-ELCMV algorithm makes the sparse array have the same beamforming capability with the full array. Moreover, the proposed algorithm can restrain the interference signals effectively, so the superiority of the algorithm is verified.
ZENG Wenhao , ZHU Xiaohua , LI Hongtao , CHEN Cheng , MA Yigeng . 2D adaptive beamforming algorithm based on matrix completion[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016 , 37(5) : 1573 -1579 . DOI: 10.7527/S1000-6893.2015.0027
[1] DUDGEON D E. Fundamentals of digital array processing[J]. Proceedings of the IEEE, 1977, 65(6):898-904.
[2] 保铮, 廖桂生, 吴仁彪, 等. 相控阵机载雷达杂波抑制的时-空二维自适应滤波[J]. 电子学报, 1993, 21(9):1-7. BAO Z, LIAO G S, WU R B, et al. 2-D temporal-spatial adaptive clutter suppression for phased array airborne radars[J]. Acta Electronica Sinica, 1993, 21(9):1-7(in Chinese).
[3] 唐波, 汤俊, 彭应宁. 圆台阵列杂波模型及空时二维自适应处理[J]. 航空学报, 2010, 31(3):587-592. TANG B, TANG J, PENG Y N. Clutter model and space time adaptive processing for truncated cone array[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3):587-592(in Chinese).
[4] 刘聪锋, 廖桂生. 最差性能最优通用信号模型稳健波束形成算法[J]. 电子学报, 2010, 38(6):1249-1255. LIU C F, LIAO G S.Robust beamforming algorithm for general signal models using worst-case performance optmization[J]. Acta Electronica Sinica, 2010, 38(6):1249-1255(in Chinese).
[5] 李洪涛, 贺亚鹏, 肖瑶, 等. 基于压缩感知的单通道鲁棒自适应波束形成算法[J]. 电子与信息学报, 2012, 34(10):2421-2426. LI H T, HE Y P, XIAO Y, et al. Compressive sensing based single-channel robust adaptive beamforming algorithm[J]. Journal of Electronics & Information Technology, 2012, 34(10):2421-2426(in Chinese).
[6] 陆珉, 许红波, 朱宇涛, 等. MIMO雷达DOA估计阵列设计[J]. 航空学报, 2010, 31(7):1410-1416. LU M, XU H B, ZHU Y T, et al. Array design of MIMO radar estimation of DOA[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7):1410-1416(in Chinese).
[7] ZHANG W, LIU W, WANG J, et al. Computationally efficient 2-D DOA estimation for uniform rectangular arrays[J]. Multidimensional Systems and Signal Processing, 2014, 25(4):847-857.
[8] YARDIBI T, LI J, STOICA P, et al. Sparse representations and sphere decoding for array signal processing[J]. Digital Signal Processing, 2012, 22(2):253-262.
[9] CANDÈS E J, RECHT B. Exact matrix completion via convex optimization[J]. Foundations of Computational mathematics, 2009, 9(6):717-772.
[10] CAI J F, CANDÈS E J, SHEN Z. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4):1956-1982.
[11] CANDÈS E J, ELDAR Y C, STROHMER T, et al. Phase retrieval via matrix completion[J]. SIAM Journal on Imaging Sciences, 2013, 6(1):199-225.
[12] RECHT B, RÈ C. Parallel stochastic gradient algorithms for large-scale matrix completion[J]. Mathematical Programming Computation, 2013, 5(2):201-226.
[13] CANDÈS E J, LI X, MA Y, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3):11-37.
[14] CHI E C, ZHOU H, CHEN G K, et al. Genotype imputation via matrix completion[J]. Genome Research, 2013, 23(3):509-518.
[15] MA S, GOLDFARB D, CHEN L. Fixed point and Bregman iterative methods for matrix rank minimization[J]. Mathematical Programming, 2011, 128(1-2):321-353.
[16] CHEN C, HE B, YUAN X. Matrix completion via an alternating direction method[J]. IMA Journal of Numerical Analysis, 2012, 32(1):227-245.
[17] CANDES E J, ELDAR Y C, STROHMER T, et al. Phase retrieval via matrix completion[J]. SIAM Journal on Imaging Sciences, 2013, 6(1):199-225.
[18] WEN Z, YIN W, ZHANG Y. Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm[J]. Mathematical Programming Computation, 2012, 4(4):333-361.
[19] KALOGERIAS, DIONYSIOS S, PETROPULU, et al. Matrix completion in colocated MIMO radar:Recoverability, bounds & theoretical guarantees[J]. IEEE Transactions on Signal Processing, 2014, 62(2):309-321.
[20] HEIDENREICH P, ZOUBIR A M, RUBSAMEN M. Joint 2-D DOA estimation and phase calibration for uniform rectangular arrays[J]. IEEE Transactions on Signal Processing, 2012, 60(9):4683-4693.
[21] 李洪涛, 贺亚鹏, 朱晓华, 等. 基于特征向量的线性约束最小方差自适应方向图控制[J]. 南京理工大学学报:自然科学版, 2011, 35(4):529-533. LI H T, HE Y P, ZHU X H, et al. Eigenvector-based linearly constrained minimum variance adaptive pattern control algorithm[J]. Journal of Nanjing University of Science and Technology, 2011, 35(4):529-533(in Chinese).
/
〈 | 〉 |