ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Radar search algorithm based on RF stealth in the case of joint intercepted threats
Received date: 2014-07-10
Revised date: 2014-09-23
Online published: 2015-01-09
Supported by
National Natural Science Foundation of China (61202339); Aeronautical Science Foundation of China (20131996013); China Postdoctoral Science Foundation (2013T60926)
The radar target search problems based on radio frequency (RF) stealth is researched in the paper. By analyzing the intercept threats of actual battlefield faced by radio-frequency radiation, a new characterization method based on joint intercepted threats of RF stealth performance is proposed, and the value estimation methods is also given; A model of parameter optimization problem for airborne radar search parameters is built, and using optimization algorithms to solve the objective functions. By analyzing the distribution characterics of the solution set of typical scenario, the method of selecting final solution is given from optimal solution set. The result shows that, the RF stealth characterization method proposed is better to reflect the multi-domain requirement of intercepted, the radar search method can improve the RF stealth performance and the search speed while assuring the detection performance, and provide methods and basis for parameter optimization and control in phased array radar search tasks.
LI Huanyu , ZHA Yufei , LI Hao , YANG Yuan , YANG Liwei . Radar search algorithm based on RF stealth in the case of joint intercepted threats[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(6) : 1953 -1963 . DOI: 10.7527/S1000-6893.2014.0363
[1] Lynch D, Jr. Introduction to RF stealth[M]. North Carolina: Science Technology Publishing Inc., 2004: 54-75.
[2] Haftbaradaran P, Kamarei M, Mofrad R F. The optimal search for multifunction phased array radar[C]//International Conference on Antennas & Propagation. Piscataway, NJ: IEEE Press, 2009: 609-612.
[3] Fan L N, Wang J K, Wang B. Radar resource management in multifunction radar[C]//International Conference on Computer Design and Applications. Piscataway, NJ: IEEE Press, 2010: 580-583.
[4] Zhang Z K, Zhou J J, Wang F. Novel algorithm of power control based on radio frequency stealth[J]. Systems Engineering and Electronics, 2012, 34(11): 2244-2248 (in Chinese). 张贞凯, 周建江, 汪飞. 基于射频隐身的相控阵雷达功率控制算法[J]. 系统工程与电子技术, 2012, 34(11): 2244-2248.
[5] Zhang Z K, Zhou J J, Wang F, et al. Research on optimal search performance of airborne phased[J]. Journal of Astronautics, 2011, 32(9): 2023-2027 (in Chinese). 张贞凯, 周建江, 汪飞,等. 机载相控阵雷达射频隐身时最优搜索性能研究[J]. 宇航学报, 2011, 32(9): 2023-2027.
[6] Liao W W, Cheng T, He Z S. A target tracking algorithm for RF stealth performance optimization of MIMO radar[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4): 1134-1141 (in Chinese). 廖雯雯, 程婷, 何子述. MIMO雷达射频隐身性能优化的目标跟踪算法[J]. 航空学报, 2014, 35(4): 1134-1141.
[7] Feng B Y, Wang Y, An H, et al. Computational model of radio frequency risk on stealth performance of airborne radar[J]. Systems Engineering and Electronics, 2013, 35(1): 73-77 (in Chinese). 冯博宇, 王瑛, 安航, 等. 机载雷达射频隐身性能风险的计算模型[J]. 系统工程与电子技术, 2013, 35(1): 73-77.
[8] Schleher D C. LPI radar: Fact or fiction[J]. IEEE Aerospace and Electronic Systems Magazine, 2006, 21 (5): 3-6.
[9] Li H Y, Bai P, Wang Q Z. Influence of antenna beam on radio frequency stealth[J]. Modern Defence Technology, 2012, 40(4): 128-133 (in Chinese). 李寰宇, 柏鹏, 王谦喆. 天线波束对飞机射频隐身性能的影响分析[J]. 现代防御技术, 2012, 40(4): 128-133.
[10] Self A G, Smith B G. Intercept time and its prediction[J]. IEE Proceedings F: Communications, Radar and Signal Processing, 1985, 132 (4): 215-220.
[11] Alexopoulos A. Closed-form solutions for number of beams in static and rotating phased array radars[J]. Electronics Letters, 2006, 42(14): 822-824.
[12] Swerling P. Probability of detection for fluctuating targets[J]. IRE Transactions on Information Theory, 1960, 6(4): 269-308.
[13] DiFranco J V, Rubin W L. Radar detection[M]. Norwood: Artech House, 1980: 158-168.
[14] Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms[D]. Nashville: Vanderbilt University, 1984.
[15] Coello C A, Pulido G T, Lechunga M S. Handing multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279.
[16] Colorni A, Dorigo M, Maniezzo V. An investigation of some properties of an ant algorithm[C]//Proceeding of Parallel Problem Solving from Nature. Brussels : Elsevier, 1992: 509-520
[17] Ye Y M,Yin J W, Feng Z L. Wolf-Pack algorithm for business process model syntactic and semantic structure verification in the workflow management environment[C]//Asia-Pacific Services Computing Conference. Piscataway, NJ: IEEE Press, 2010: 694-699.
[18] Coello C A, Cortes N C. Solving multi-objective optimization problems using an artificial immune system[J]. Genetic Programming and Evolvable Machines, 2005, 6 (2): 163-190.
[19] Wu H S, Zhang F M, Wolf Pack algorithm for unconstrained global optimization[J]. Mathematical Problems in Engineering, 2014, DOI: 10.1155/2014/465082
[20] Deb K, Agrawal S, Pratap A. A fast and elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279.
/
〈 |
|
〉 |