Fluid Mechanics and Flight Mechanics

High-order accuracy numerical simulation of DLR-F6 wing-body configuration

  • WANG Yuntao ,
  • SUN Yan ,
  • WANG Guangxue ,
  • ZHANG Yulun ,
  • LI Wei
Expand
  • 1. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2014-09-07

  Revised date: 2014-12-29

  Online published: 2015-01-07

Supported by

National Key Basic Research Program of China (2014CB744803)

Abstract

Based on the Reynolds-averaged Navier-Stokes (RANS) equations and structured grid technology, the fifth-order weighted compact nonlinear scheme (WCNS) and shear stress transport (SST) turbulence model are adopted to conduct a high-order numerical simulation of DLR-F6 wing-body configuration, for the purpose of validating the ability of WCNS in the simulation of typical transport configuration at transonic speed. The grid convergence study is performed with coarse, medium and fine grid systems, the effects of grid density on the simulation of DLR-F6 wing-body configuration are studied from aerodynamic characteristics, pressure distribution and flow pattern on the surface. The variation of aerodynamic characteristics with angles of attack is performed with the medium grid. Compared to the experimental data, CFL3D and TRIP results, the numerical results indicate that the grid density mainly affect the location of shock wave and pressure drag coefficient, and slightly affect the size of separation zone at the wing-body juncture. The numerical accuracy is significantly improved with high-order numerical method and the discrepancy of pitching moment coefficients between numerical data and experimental data needs further study.

Cite this article

WANG Yuntao , SUN Yan , WANG Guangxue , ZHANG Yulun , LI Wei . High-order accuracy numerical simulation of DLR-F6 wing-body configuration[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(9) : 2923 -2929 . DOI: 10.7527/S1000-6893.2014.0362

References

[1] Johnson F T, Tinoco E N, Jong Y. Thirty years of development and application of CFD at Boeing commercial airplane, Seattle,AIAA-2003-3439[R]. Reston:AIAA,2003.
[2] Tinoco E N, Bogue D R, Kao T J, et al. Progress toward CFD for full flight envelope[J]. The Aeronautical Journal, 2005, 109(1100): 451-460.
[3] Xu J, Liu Q H, Cai J S, et al. Drag prediction based on overset grids with implict hole cutting technique[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 208-217 (in Chinese). 徐嘉, 刘秋洪, 蔡晋生, 等. 基于隐式嵌套重叠网格技术的阻力预测[J]. 航空学报, 2013, 34(2): 208-217.
[4] Zhang W S, Chen H X, Zhang Y F, et al. Nacelle strake'saerodynamic characteristics effects on high-lift configuration of transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1): 76-85 (in Chinese). 张文升, 陈海昕, 张宇飞, 等. 短舱扰流片对运输机增升装置气动特性的影响[J]. 航空学报, 2013, 34(1): 76-85.
[5] Slotnick J, Khodadoust A, Alonso J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences, NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014.
[6] Salas M D. Digital flight: The last CFD aeronaoutical grand challenge[J]. Journal of Scientific Computing, 2006,28(2-3): 479-505.
[7] Levy D W, Zickuhr T, Vassberg J C, et al. Summary of data from the first AIAA CFD drag prediction workshop, AIAA-2002-0841[R]. Reston: AIAA, 2002.
[8] Laflin K R, Klausmeyer S M, Zickuhr T, et al. Data summary from the second AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2005, 42(5): 1165-1178.
[9] Vassberg J C, Tinoco E N, Mani M, et al. Abridged summary of the third AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2008, 45(3): 781-798.
[10] Vassberg J C, Tinoco E N, Mani M, et al. Summary of the fourth AIAA CFD drag prediction workshop, AIAA-2010-4547[R]. Reston: AIAA, 2010.
[11] Levy D W, Laflin K R, Tinoco E N, et al. Summary of data from the fifth AIAA CFD drag prediction workshop, AIAA-2013-0046[R]. Reston: AIAA, 2013.
[12] Hemsch M, Morrision J. Statistical analysis of CFD solutions for 2nd drag prediction workshop, AIAA-2005-0556[R]. Reston: AIAA, 2005.
[13] Deng X G, Zhang H X. Developing high-order weightedcompact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1): 24-44.
[14] Deng X G, Mao M L, Tu G H, et al. Geometric conservation law and application to high-order finite difference scheme with stationary grid[J]. Journal of Computational Physics, 2011, 230(4): 1100-1115.
[15] Deng X G, Min R B, Mao M L, et al. Further studies on geometric conservation law and application to high-order finite difference scheme with stationary grid[J]. Journal of Computational Physics, 2013, 239: 90-111.
[16] Menter F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[17] Godard J L. F6 model tests in the ONERA S2MA wind tunnel[C]//The 2nd AIAA CFD Drag Prediction Workshop. Reston: AIAA, 2003.
[18] Wang Y T, Wang G X, Zhang Y L. Validation of TRIP2.0: Numerical simulation of DPWII complex configuration[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1): 34-40 (in Chinese). 王运涛, 王光学, 张玉伦. TRIP2.0软件的确认:DPWII复杂组合体的数值模拟[J]. 航空学报, 2008, 29(1): 34-40.
[19] Vassberg J C, Tinoco E N, Mani M, et al. Comparison of NTF experimental data with CFD predictions from the third AIAA CFD drag prediction workshop, AIAA-2008-6918[R]. Reston: AIAA, 2008.
[20] Tinoco E N. Drag prediction with the Zeus/CFL3D system, AIAA-2004-0552[R]. Reston: AIAA, 2004.

Outlines

/