ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Flow characteristics analysis and optimization design of supercritical airfoil at low Reynolds number
Received date: 2014-10-10
Revised date: 2014-12-11
Online published: 2014-12-17
Supported by
PLA General Armament Department Pre-Research Foundation of China (513250101)
Based on the research of the high-attitude long-endurance solar unmanned aerial vehicle (UAV), the aerodynamic performances and optimization design of the supercritical airfoil RAE2822 at high subsonic speed and low Reynolds number are numerically simulated and studied. To verify the accuracy and reliability of the SST k-ω turbulence model, finite volume method is used to solve the 2D Reynolds-averaged Navier-Stokes equations for the numerical simulations of the fluid around RAE2822 at typical Reynolds number. Meanwhile, a detailed analysis of the aerodynamic forces among different altitudes is conducted and the low Reynolds effects are summarized, then the high subsonic and low Reynolds number flow characteristics are researched by analyzing the fluid structure and flow mechanism around RAE2822. Finally, an optimization concept of weakening the shock waves is proposed for the supercritical airfoil design at high subsonic speed and low Reynolds number, whose feasibility is tested and verified by an optimization case.
WANG Kelei , ZHOU Zhou , XU Xiaoping , GAN Wenbiao . Flow characteristics analysis and optimization design of supercritical airfoil at low Reynolds number[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(10) : 3275 -3283 . DOI: 10.7527/S1000-6893.2014.0345
[1] Drela M. Low-Reynolds number airfoil design for the MIT Daedalus prototype: A case study[J]. Journal of Aircraft, 1988, 25(8): 724-732.
[2] Liebeck R H. Low Reynolds number airfoil design for subsonic compressible flow[J]. Lecture Notes in Engineering, 1989, 54: 314-330.
[3] Drela M. Transonic low-Reynolds number airfoils[J]. Journal of Aircraft, 1992, 29(6): 1106-1113.
[4] Greer D, Hamory P, Krake K, et al. Design and predictions for high-altitude (low Reynolds number) aerodynamic flight experiment[J]. Journal of Aircraft, 2000, 37(4): 684-689.
[5] Yang Q Z, Zhang Z Y. Analysis of boundary layer and aerodynamic characteristics of a supercritical laminar wing[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(5): 438-442 (in Chinese). 杨青真, 张仲寅. 超临界层流机翼边界层及气动特性分析[J]. 航空学报, 2004, 25(5): 438-442.
[6] Wang K L, Zhou Z, Gan W B, et al. Studying aerodynamic performance of the low-Reynolds-number airfoil of solar energy UAV[J]. Journal of Northwestern Polytechnical University, 2014, 32(2): 163-168 (in Chinese). 王科雷, 周洲, 甘文彪, 等. 太阳能无人机低雷诺数翼型气动特性研究[J]. 西北工业大学学报, 2014, 32(2): 163-168.
[7] Li A J, Shen Y, Zhang W G, et al. The developing high altitude long endurance UAV[J]. Aviation Science, 2001(2): 34-36 (in Chinese). 李爱军, 沈毅, 张卫国, 等. 发展中的高空长航时无人机[J]. 航空科学技术, 2001(2): 34-36.
[8] Michael S S, James J G. High-lift low Reynolds number airfoil design[J]. Journal of Aircraft, 1997, 34(1): 72-78.
[9] Zhang W Z, He D X, Zhang Z S. The design and experiment study for a high lift airfoil at low Reynolds numbers[J]. Acta Aerodynamica Sinca, 1998, 16(3): 363-367 (in Chinese). 张维智, 贺德馨, 张兆顺. 低雷诺数高升力翼型的设计和实验研究[J]. 空气动力学报, 1998, 16(3): 363-367.
[10] Qiao Z D. Design of supercritical airfoils with natural laminar flow[J]. Experiments and Measurements Fluid Mechanics, 1998, 12(4): 23-30 (in Chinese). 乔志德. 自然层流超临界翼型的设计研究[J]. 流体力学实验与测量, 1998, 12(4): 23-30.
[11] Huang J T, Gao Z H, Bai J Q, et al. Laminar airfoil aerodynamic optimization design base on delaunay graph mapping and FFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1817-1826 (in Chinese). 黄江涛, 高正红, 白俊强, 等. 应用Delaunay图映射与FFD技术的层流翼型气动优化设计[J]. 航空学报, 2012, 33(10): 1817-1826.
[12] Langtry R B, Menter F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12): 2894-2906.
[13] Wang X, Cai J S, Qu K, et al. Airfoil optimization based on improved CST parametric method and transition model[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 449-461 (in Chinese). 王迅, 蔡晋生, 屈崑, 等. 基于改进CST参数化方法和转捩模型的翼型优化设计研究[J]. 航空学报, 2015, 36(2): 449-461.
[14] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[15] Cook P H, Lock R C. Aerofoil RAE2822-pressure distributions and boundary layer and wake measurements, AGARD Report AR 138[R]. 1979.
[16] Catalano P, Amato M. An evaluation of RANS turbulence modelling for aerodynamic applications[J]. Aerospace Science and Technology, 2003, 7(7): 493-509.
[17] Counsil J N N, Boulamat K G. Low-Reynolds-number aerodynamic performances of the NACA0012 and Selig-Donovan7003 airfoils[J]. Journal of Aircraft, 2013, 50(1): 204-216.
[18] Hager J O, Eyi S, Lee K D. Multi-point design of transonic airfoils using optimization[C]//AIAA Aircraft Design Systems Meeting, 1992, 4225: 1-9.
[19] Mu X F, Yao W X, Yu X Q, et al. A survey of surrogate models used in MDO[J]. Chinese Journal of Computational Mechanics, 2005, 22(5): 608-612 (in Chinese). 穆雪峰, 姚卫星, 余雄庆, 等. 多学科设计优化中常用代理模型的研究[J]. 计算力学学报, 2005, 22(5): 608-612.
[20] Sun M J, Zhan H. Application of Kriging surrogate model for aerodynamic shape optimization of wing[J]. Acta Aerodynamica Sinca, 2011, 29(6): 759-764 (in Chinese). 孙美建, 詹浩. Kriging模型在机翼气动外形优化中的应用[J]. 空气动力学报, 2011, 29(6): 759-764.
[21] Wang K L. Research on the low Reynolds number airfoil design[D]. Xi'an: Northwestern Polytechnical University, 2014 (in Chinese). 王科雷. 低雷诺数翼型设计研究[D]. 西安: 西北工业大学, 2014.
[22] Lai Y Y. Optimization theory and detailed examples of Isight[M]. Beijing: Beijing Aeronautics and Astronautics University Press, 2012: 117-127 (in Chinese). 赖宇阳. Isight参数优化理论与实例详解[M]. 北京: 北京航空航天大学出版社, 2012: 117-127.
[23] Holland J. Adaptation in natural and artificial system[M]. Cambridge: MIT Press, 1992: 90-118.
[24] Wang X P, Cao L M. Genetic algorithm——theory, application and realization[M]. Xi'an: Xi'an Jiaotong University Press, 2002: 9-16 (in Chinese). 王小平, 曹立明. 遗传算法——理论、应用与软件实现[M]. 西安: 西安交通大学出版社, 2002: 9-16.
/
〈 | 〉 |