ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Integrated missile guidance and control design based on neural network and back-stepping control theory
Received date: 2014-05-07
Revised date: 2014-12-15
Online published: 2014-12-17
Supported by
Aeronautical Science Foundation of China (20130196004)
In allusion to the problem that the uncertainty in the integrated guidance and control (IGC) model is difficult to estimate and compensate, a novel IGC algorithm is designed based on neural network and back-stepping control theory. Firstly, the three space dimensional IGC model is constructed with the relative motion of the missile and target as well as the missile autopilot model. Secondly, aimed at the model uncertainty caused by the target maneuvers, a novel method is proposed featuring the estimation of target acceleration by introducing the high order sliding mode differentiator (SMD) which differentiates the target and missile relative motion information obtained from the missile active homing seeker. Then, the uncertainties caused by possible parameter perturbations and unmodelled dynamics are considered. With the SMD and neural network performing an online estimation and compensation, a novel IGC algorithm with SMD and neural network is designed based on the back-stepping control. The stability of the algorithm is precisely derived and analyzed. Finally, the missile's six degree of freedom simulation is carried out to verify the effectiveness of the algorithm.
ZHOU Jin , LEI Humin , LI Jiong , SHAO Lei . Integrated missile guidance and control design based on neural network and back-stepping control theory[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(5) : 1661 -1672 . DOI: 10.7527/S1000-6893.2014.0346
[1] Lin C F, Yueh W R. Optimal controller for homing missile[C]//Proceedings of the 1984 American Control Conference. Piscataway, NJ: IEEE Press, 1984: 737-742.
[2] Lin C F, Ever J H. A LTV dynamics model for missile guidance and control in the endgame[C]//AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 1992: 1024-1029.
[3] Menon P K, Ohlmeyer E J. Integrated design of agile missile guidance and autopilot systems[J]. Control Engineering Practice, 2001, 9(10): 1095-1106.
[4] Xin M, Balakrishnan S N, Ohlmeyer E J. Integrated guidance and control of missiles with θ-D method[J]. IEEE Transactions on Control Systems Technology, 2006, 14(6): 981-982.
[5] Xue W C, Huang C D, Huang Y. Design methods for the integrated guidance and control system[J]. Control Theory&Applications, 2013, 30(12): 1511-1520 (in Chinese). 薛文超, 黄朝东, 黄一. 飞行制导控制一体化设计方法综述[J]. 控制理论与应用, 2013, 30(12): 1511-1520.
[6] Shimal T, Idan M, Golan O M. Sliding-mode control for integrated missile autopilot guidance[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(2): 250-260.
[7] Duan G R, Hou M Z, Tan F. Adaptive, integrated guidance and control law design using sliding mode approach [J]. Acta Armamentarii, 2010, 31(2): 191-198 (in Chinese). 段广仁, 侯明哲, 谭峰. 基于滑模方法的自适应一体化导引与控制律设计[J]. 兵工学报, 2010, 31(2): 191-198.
[8] Hou M Z, Liang X L, Duan G R. Adaptive block dynamic surface control for integrated missile guidance and autopilot[J]. Chinese Journal of Aeronautics, 2013, 26(3): 741-750.
[9] Dong F Y, Lei H M, Li H N, et al. Optinal sliding-mode control for nonlinear systems subject to acceleration constraint[J]. Control Theory and Application, 2012, 29(10): 1223-1226 (in Chinese). 董飞垚, 雷虎民, 李海宁, 等. 一类带有加速度约束的非线性系统最优滑模控制[J]. 控制理论与应用, 2012, 29(10): 1223-1226.
[10] Zhang B Q, Song S M. Integrated playback design of missile guidance and control based on adaptive sliding-mode control[J]. Journal of Projectiles,Rockets, Missiles and Guidance, 2009, 29(5): 31-35 (in Chinese). 张保群, 宋申民. 基于自适应滑模控制的导弹制导与控制一体化反演设计[J]. 弹箭与制导学报, 2009, 29(5): 31-35.
[11] Zha X, Cui P Y, Zhang B J. An integrated approach to guidance and control for aircraft applying to attack the ground fixed targets[J]. Journal of Astronautics, 2005, 26(1): 13-18 (in Chinese). 查旭, 崔平远, 张伯浚. 攻击固定目标的飞行器制导控制一体化设计[J]. 宇航学报, 2005, 26(1): 13-18.
[12] Yin Y X, Yang M, Wang Z C. Three-dimensional guidance and control for missile[J]. Electric Machines and Control, 2010, 14(3): 87-91 (in Chinese). 尹永鑫, 杨明, 王子才. 导弹三维制导控制一体化设计[J]. 电机与控制学报, 2010, 14(3): 87-91.
[13] Dong F Y, Lei H M, Zhou C J. et al. Research of integrated robust high order sliding mode guidance and control for missiles[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2212-2218 (in Chinese). 董飞垚, 雷虎民, 周池军, 等. 导弹鲁棒高阶制导控制一体化研究[J]. 航空学报, 2013, 34(9): 2212-2218.
[14] Song H T, Zhang T, Zhang G L, et al. Integrated design of interceptor guidance and control considering modeling error[J]. Acta Armamentarii, 2013, 34(9): 1167-1172 (in Chinese). 宋海涛, 张涛, 张国良, 等. 考虑建模误差的拦截弹制导控制一体化设计[J]. 兵工学报, 2013, 34(9): 1167-1172.
[15] Yin Y X, Shi W, Yang M. Integrated guidance and control based on dynamic inverse and extended state observer method[J]. System Engineering and Electronics, 2011, 33(6): 1342-1345 (in Chinese). 尹永鑫, 石文, 杨明. 基于动态逆和状态观测的直到控制一体化设计[J].系统工程与电子技术, 2011, 33(6): 1342-1345.
[16] Zhurbal A, Idan M. Effect of estimation on the performance of an integrated missile guidance and control system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2690-2708.
[17] Li H G. Guidance and control of hypersonic vehicles[M]. Beijing: National Astronautics Press, 2012: 195-198 (in Chinese). 李慧峰. 高超声速飞行器制导与控制技术[M]. 北京: 中国宇航出版社, 2012: 195-198.
[18] Levant A. Robust exact differentiation via sliding mode technique[J]. Automatica, 1998, 34(3): 379-384.
[19] Krupp D R, Shkolnikov I A, Shtessel Y B. 2-sliding mode control for nonlinear plants with parametric and dynamic uncertainties, AIAA-2000-3965[R]. Reston: AIAA, 2000.
[20] Cho D, Kang S, Kim H J, et al. Adaptive dynamic surface control based on neural network for missile autopilot, AIAA-2011-6251[R]. Reston: AIAA, 2011.
[21] Shin D H, Kim Y D. Reconfigurable flight control system design using adaptive neural networks[J]. IEEE Transactions on Control Systems Technology, 2004, 12(1): 87-102.
[22] Hornik K, Stinchcombe M, White H. Multilayer feed forward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366.
/
〈 | 〉 |