ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Experiment of flow control on a low swept delta wing using pulsed nanosecond plasma actuation
Received date: 2014-09-02
Revised date: 2014-12-10
Online published: 2014-12-15
Supported by
National Natural Science Foundation of China (51336011, 51276197, 51207169)
In order to explore the flow control effect and mechanism of nanosecond dielectric barrier discharge (NS DBD) on the low swept delta wing with sharp leading edge, force measurements and flow visualization experiments are conducted on a 30° swept delta wing. When the flow speed is 30 m/s and 45 m/s, it is found that leading-edge plasma actuation can significantly improve the aerodynamics of delta wing at a high angle of attack, with the maximum lift coefficient increased by about 18.3%. The influence law of the actuation frequency on the control effect is investigated, that is the optimum reduced frequency of F+≈1 to 2. When the flow speed is 20 m/s, particle image velocimetry (PIV) measurement is conducted to investigate the formation of leading edge vortices affected by the pulsed NS DBD at different angles of attack. The flow pattern obtained from the PIV measurement shows that flow reattachment is promoted by excitation, and an intensified vortex flow pattern develops. Based on the experimental results, it is supposed that the reforming of leading-edge vortex, resulting from periodic emanation of small-scale vortices moving along the shear layer due to the pulsed actuation, may be the mechanism.
Key words: flow control; dielectric barrier discharge; plasma; nanosecond pulse; delta wing
ZHAO Guangyin , LIANG Hua , LI Yinghong , HAN Menghu , HUA Weizhuo . Experiment of flow control on a low swept delta wing using pulsed nanosecond plasma actuation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(7) : 2125 -2132 . DOI: 10.7527/S1000-6893.2014.0341
[1] Li Y H, Liang H, Ma Q Y, et al. Experimental investigation on airfoil suction side flow separation by pulse plasma aerodynamic actuation[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1429-1435 (in Chinese). 李应红, 梁华, 马清源,等. 脉冲等离子体气动激励抑制翼型吸力面流动分离的试验研究[J]. 航空学报, 2008, 29(6): 1429-1435.
[2] Li Y H, Wu Y, Liang H, et al. The mechanism of plasma shock flow control for enhancing flow separation control capability[J]. Chinese Science Bulletin (Chinese Ver), 2010, 55(31): 3060-3068 (in Chinese). 李应红, 吴云, 梁华, 等. 提高抑制流动分离能力的等离子体冲击流动控制原理[J]. 科学通报, 2010, 55(31): 3060-3068.
[3] Rethmel C, Little J, Takashima K, et al. Flow separation control over an airfoil with nanosecond pulse driven DBD plasma actuators, AIAA-2011-0487[R]. Reston: AIAA,2011.
[4] Roupassov D V, Nikipelov A A, Nudnova M M,et al.Flow separation control by plasma actuator with nanosecond pulse periodic discharge, AIAA-2008-1367[R]. Reston: AIAA, 2008
[5] Bisek N J, Poggie J, Nishihara M, et al. Computational and experimental analysis of Mach 5 air flow over a cylinder with a nanosecond pulse discharge, AIAA-2012-0186 [R]. Reston: AIAA, 2012
[6] Ni F Y, Shi Z W, Du H. Numerical simulation of nanosecond pulsed plasma actuator for cylindrical high-speed flow control[J]. Acta Aeronautica et Astronautica Sinica, 2014, (35)3: 657-665 (in Chinese). 倪芳原, 史志伟, 杜海. 纳秒脉冲等离子体激励器用于圆柱高速流动控制的数值模拟[J].航空学报,2014,(35)3: 657-665.
[7] Kwak D Y, Nelson R C. Vortical flow control over delta wings with different sweep back angles using DBD plasma actuators, AIAA-2010-4837[R]. Reston: AIAA, 2010.
[8] Greenblatt D, Kastantin Y, Nayeri C N, et al. Delta-wing flow control using dielectric barrier discharge actuators[J]. AIAA Journal, 46(6): 1554-1560.
[9] Sidorenko A A, Budovskiy A D, Maslov A A, et al. Plasma control of vortex flow on a delta wing at high angles of attack[J]. Experiments in Fluids, 2013, 54: 1585.
[10] Zhang P F, Wang J J, Feng L H, et al. Experimental study of plasma flow control on highly swept delta wing[J]. AIAA Journal, 2010, 48(1): 249-252.
[11] Hua W Z, Li Y H, Niu Z G, et al. Experiment on low-speed delta wing using pulse nanosecond plasma actuation[J]. Journal of Aerospace Power, 2014, 10(29): 2331-2339 (in Chinese). 化为卓, 李应红, 牛中国, 等. 低速三角翼纳秒脉冲等离子体激励试验[J].航空动力学报,2014, 10(29): 2331-2339.
[12] Zhao G Y, Li Y H, Liang H, et al. Control of vortex on a non-slender delta wing by a nanosecond pulse surface dielectric barrier discharge[J]. Experiments in Fluids, 2015, 56: 1864.
[13] Zhao G Y, Li Y H, Hua W Z, et al. Experimental study of flow control on delta wings with different sweep angles using pulsed nanosecond DBD plasma actuators[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 0(0): 1-9.
[14] Greenblatt D, Washburn A. Influence of finite span and sweep on active flow control efficacy[J]. AIAA Journal, 2008, 46(7): 1675-1694.
/
〈 | 〉 |