Review

Application progress of composites in space remote sensor and its key problems

  • ZHANG Linghui ,
  • CHEN Ping
Expand
  • Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China

Received date: 2014-10-19

  Revised date: 2014-11-25

  Online published: 2014-12-10

Abstract

Advanced composite materials have become the important materials in space remote sensor with their excellent performance. There are plenty of successful application examples for various kinds of composite materials, such as polymer matrix composite, metal matrix composite, ceramics matrix composite, carbon/carbon composite, etc. The upgrade of materials and process have a positive impact on improving performance and function of space remote sensor. However, at present, the engineering application is still at a low level of replacing traditional materials to meet mission requirements. Performances of materials commonly used are compared and evaluated for the special requirements of space remote sensor. Application of composite materials in the main components is introduced. Composite materials and process suitable for space remote sensor are summarized. Furthermore, the key problems of engineering application are discussed. Finally, demands of developing space remote sensor system for composite materials are forecast.

Cite this article

ZHANG Linghui , CHEN Ping . Application progress of composites in space remote sensor and its key problems[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(5) : 1385 -1400 . DOI: 10.7527/S1000-6893.2014.0330

References

[1] Chen S P. Development of space remote sensing science and technology[J]. Spacecraft Engineering, 2009, 18(2): 1-3(in Chinese). 陈世平. 航天遥感科学技术的发展[J]. 航天器工程, 2009, 18(2): 1-3.
[2] Kramer H K. Observation of the earth and its environment(survey of missions and sensors)[M]. Berlin: Springer-Verlag, 2002: 22-45.
[3] Du S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-6 (in Chinese). 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-6.
[4] Chen X B. The development and applications of advanced polymer matrix composites[J]. Journal of Aeronautical Materials, 2003, 23(Sup.): 198-199 (in Chinese). 陈祥宝. 先进树脂基复合材料的发展与应用[J]. 航空材料学报, 2003, 23(增刊): 198-199.
[5] Zhang L H, Chen P, Wang Q J, et al. Composite materials and technology of baffle for space remote sensor[J]. Journal of Astronautics, 2014, 35(6): 726-734 (in Chinese). 章令晖, 陈萍, 王琦洁, 等. 适用于遥感器遮光罩的复合材料及工艺研究[J]. 宇航学报, 2014, 35(6): 726-734.
[6] Bedingfield K L, Leach R D, Alexander M B. Spacecraft system failures and anomalies attributed to the natural space environment, NASA-RP-1390[R]. Washington, D.C.: NASA, 1996.
[7] Grossman E, Gouzman I. Space environment effects on polymers in low earth orbit[J]. Nuclear Instruments and Methods in Physics Research B, 2003, 208: 48-57.
[8] Cai W J, Fan B, Zhang F Q, et al. High opto-mechanical stability design of multi-spectral camera[J]. Spacecraft Recovery & Remote Sensing, 2012, 33(3): 85-92 (in Chinese). 蔡伟军, 范斌, 张凤芹, 等. 多光谱相机高稳定性光机结构设计技术[J]. 航天返回与遥感, 2012, 33(3): 85-92.
[9] Lin Z W, Liu Y Q, Liang Y, et al. Application of carbon fiber reinforced composite to space optical structure[J]. Optics and Precision Engineering, 2007, 15(8): 1181-1184 (in Chinese). 林再文, 刘永琪, 梁岩, 等. 碳纤维增强复合材料在空间光学结构中的应用[J]. 光学精密工程, 2007, 15(8): 1181-1184.
[10] Zhang L H, Zhou H Z, Li M Z, et al. Study on engineering application of composites lens barrel in remote sensing camera[J]. Aeronautical Manufacturing Technology, 2012(20): 77-79 (in Chinese). 章令晖, 周宏志, 李明珠, 等. 遥感相机复合材料镜筒的工程化研究[J]. 航空制造技术, 2012(20): 77-79.
[11] Li R Z, Hu Q M, Li J, et al. Properties of C/C camera cylinder composites[J]. Carbon, 2011(2): 19-23 (in Chinese). 李瑞珍, 胡秦妹, 李晋, 等. C/C镜筒复合材料的性能研究[J]. 炭素, 2011(2): 19-23.
[12] Sun D W, Zhang G Y, Zhang Q X, et al. Application of graphite fiber reinforced aluminum matrix composite to body tube structure in space remote sensor[J]. Optics and Precision Engineering, 2009, 17(2): 369-372(in Chinese). 孙德伟, 张广玉, 张其馨, 等. 石墨纤维增强铝基复合材料在空间遥感器镜筒结构中的应用[J]. 光学精密工程, 2009, 17(2): 369-372.
[13] Sun D H, Xia Y W, Li G H. Support structure of composites in space optical remote sensor[C]//23th National Academic Conference on Space Exploration. Beijing: China Society of Space Research, 2010: 1-6 (in Chinese). 孙东华, 夏英伟, 李国宏. 空间光学遥感器复合材料支撑结构[C]//第二十三届全国空间探测学术交流会. 北京: 中国空间科学学会, 2010: 1-6.
[14] Fang H J, Chen N, Zhai G Q. Application of composite strengthened frame in space stability structure panels[C]//23th National Academic Conference on Space Exploration. Beijing: China Society of Space Research, 2010: 1-9(in Chinese). 房海军, 陈宁, 翟广泉. 几字形复合材料加强框架在空间高稳板型结构中的应用[C]//第二十三届全国空间探测学术交流会. 北京: 中国空间科学学会, 2010: 1-9.
[15] Chen P, Zhang L H, Luo S K, et al. Forming technology of complex curved surface baffle[J]. Spacecraft Recovery & Remote Sensing, 2013, 34(6): 81-88 (in Chinese). 陈萍, 章令晖, 罗世魁, 等. 一种复杂曲面型遮光罩的成型技术[J]. 航天返回与遥感, 2013, 34(6): 81-88.
[16] Wienhold P D, Fasold M J, Schaefer E D. Development a light baffle assembly for the CRISM instrument[J]. SAMPE Journal, 2004, 40(5): 65-69.
[17] Zhang L H, Han Y, Wo X Y, et al. Analysis on process defects of honey comb sandwich[J]. Spacecraft Recovery & Remote Sensing, 2006, 27(1): 57-61 (in Chinese). 章令晖, 韩宇, 沃西源, 等. 蜂窝夹层结构常见制造缺陷分析[J]. 航天返回与遥感, 2006, 27(1): 57-61.
[18] Chen P, Zhang L H, Luo S K. Development technology of shutter-type baffle in space remote sensor[J]. Aerospace Manufacturing Technology, 2012(6): 46-49 (in Chinese). 陈萍, 章令晖, 罗世魁. 空间遥感器百叶罩的研制技术[J]. 航天制造技术, 2012(6): 46-49.
[19] Chen L H, Wu Q W, Ge R W, et al. Structure scheme selection of baffle for space optical remote sensor[J]. Optical Technique, 2008, 34(2): 305-307 (in Chinese). 陈立恒, 吴清文, 葛任伟, 等. 空间光学遥感器遮光罩结构方案选择[J]. 光学技术, 2008, 34(2): 305-307.
[20] Steeves J, Laslandes M, Pellegrino S, et al. Design, fabrication and testing of active carbon shell mirrors for space telescope applications[C]//SPIE Astronomical Telescopes and Instrumentation. Montreal: SPIE, 2014: 915105.
[21] Wang X J, Chen J X, Zhang Y, et al. Fabrication of spacial primary mirror[J]. Journal of Atmospheric and Environmental Optics, 2009, 4(2): 81-85 (in Chinese). 王相京, 陈结祥, 张毅, 等. 空间主镜制备方法[J]. 大气与环境光学学报, 2009, 4(2): 81-85.
[22] Cui Y, Li L F, Li J L, et al. High volume fraction SiC/Al composites for space-based optomechanical structures[J]. Optics and Precision Engineering, 2007, 15(8): 1175-1180 (in Chinese). 崔岩, 李丽富, 李景林, 等. 制备空间光机结构件的高体份SiC/Al复合材料[J]. 光学精密工程, 2007, 15(8): 1175-1180.
[23] Zhang X J, Li Z L, Zhang Z Y. Space telescope aspherical mirror structure design based on SiC material[J]. Infrared and Laser Engineering, 2007, 36(5): 577-579 (in Chinese). 张学军, 李志来, 张忠玉. 基于SiC材料的空间相机非球面反射镜结构设计[J]. 红外与激光工程, 2007, 36(5): 577-579.
[24] Wu G H, Xiu Z Y, Chen G Q, et al. Optical grade composites and its space application prospects[C]//2nd Conference on Space Materials and Application Technology. Beijing: China Academy of Space Technology, 2009: 462-465(in Chinese). 武高辉, 修子扬, 陈国钦, 等. 光学级复合材料及其空间应用展望[C]//第二届空间材料及其应用技术学术交流会. 北京: 中国空间技术研究院, 2009: 462-465.
[25] Gao M H, Zhang J, Li J L, et al. Feasibility analysis of high volume fraction SiC/Al mirror application in space optics[J]. Infrared and Laser Engineering, 2012, 41(7): 1803-1807 (in Chinese). 高明辉, 张军, 李景林, 等. 高体份SiC/Al反射镜在空间光学应用可行性的分析[J]. 红外与激光工程, 2012, 41(7): 1803-1807.
[26] Druma A M, Alam M K, Druma C. Analysis of thermal conduction in carbon forms[J]. International Journal of Thermal Sciences, 2004(43): 689-695.
[27] Shen Z, Chai Y N, Yang S C, et al. The outline of new specifications on strength of composite aircraft structures[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5): 785-788 (in Chinese). 沈真, 柴亚南, 杨胜春, 等. 复合材料飞机结构强度新规范要点评述[J]. 航空学报, 2006, 27(5): 785-788.
[28] Jiang X L, Lv C, Xiao Z H. Study on ultrasonic vibrational combined cutting of SiCp/Al composites[J]. Spacecraft Recovery & Remote Sensing, 2012, 33(5): 74-81 (in Chinese). 江希龙, 吕宠, 肖正航. SiCp/Al复合材料超声振动复合切削加工技术研究[J]. 航天返回与遥感, 2012, 33(5): 74-81.
[29] Gao Y, Xu J W, Wang B C, et al. Research status on interaction between space environment and carbon/epoxy composites[J]. Aeronautical Manufacturing Technology, 2012(15): 66-69 (in Chinese). 高禹, 徐晋伟, 王伯臣, 等. 空间环境与碳/环氧复合材料交互作用的研究现状[J]. 航空制造技术, 2012(15): 66-69.
[30] Miracle D B. Metal matrix composites: from technology to science[J]. Composite Science and Technology, 2005, 65(15-16): 2526-2540.
[31] Hofmann D C, Suh J Y, Wiest A, et a1. Designing metallic glass matrix composites with high toughness and tensile ductility[J]. Nature, 2008, 451: 1085-1089.
[32] Wang T, Zhao Y X, Fu S H, et al. Progress and key problems in research and fabrication of fiber reinforced metal matrix composite[J]. Journal of Aeronautical Materials, 2013, 33(2): 87-96 (in Chinese). 王涛, 赵宇新, 付书红, 等. 连续纤维增强金属基复合材料的研制进展及关键问题[J]. 航空材料学报, 2013, 33(2): 87-96.
[33] Jiao J, Chen M W. Preparation, property and application of ceramic matrix composites[J]. Aeronautical Manufacturing Technology, 2014(7): 62-69 (in Chinese). 焦健, 陈明伟. 陶瓷基复合材料的制备、性能及应用[J]. 航空制造技术, 2014(7): 62-69.
[34] Liu B, Li Y, Xiao J, et al. UV-curing process and mechanical properties of bisphenol a epoxy resin[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1424-1432 (in Chinese). 刘博, 李勇, 肖军, 等. 双酚A型环氧树脂紫外光固化工艺及其力学性能[J]. 航空学报, 2014, 35(5): 1424-1432.
[35] Yi X S. Research progress on integrated composite structure technologies[J]. Aeronautical Science and Technology, 2011(2): 4-8 (in Chinese). 益小苏. 复合材料结构整体化技术研究进展[J]. 航空科学技术, 2011(2): 4-8.
[36] Lin C, Chen F, Yuan L, et al. Research progress in intelligent composite materials[J]. Fiber Reinforced Plastics/Composites, 2012(2): 74-77 (in Chinese). 林超, 陈凤, 袁莉, 等. 智能复合材料研究进展[J]. 玻璃钢/复合材料, 2012(2): 74-77.

Outlines

/