ACTA AERONAUTICAET ASTRONAUTICA SINICA >
A time-domain computational method for dynamic properties and analysis of helicopter rotor elastomeric damper
Received date: 2014-07-18
Revised date: 2014-10-15
Online published: 2014-12-01
Supported by
National Natural Science Foundation of China (11272148); A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
A new constitutive model of elastomer damper is presented; the model is able to capture the strain-stress relationship of the helicopter rotor elastomeric damper, which is highly influenced by the excitation frequency, amplitude and the nonlinear stiffness of the elastomeric material. This model has combined with the nonlinear spring model and the variation law of stiffness can be modified, therefore, this model can reflect various variation law of stiffness of different materials by one model and the generality is improved. Multi internal variables field is used to have better frequency and amplitude dependence. Two elastomeric dampers made of two different types of elastomers are investigated through extensive tests of amplitudes and frequencies within typical working condition of rotor elastomeric damper. Based on this model, an elastomeric damper model is developed, different kinds of elastomeric damper's dynamic properties at different frequencies, strain amplitudes and dual-frequency have been calculated and compared with the experimental data. It is shown that the presented model can predict the dynamic stiffness and damping of the elastomeric damper made from different types of elastomers with few relative errors. Therefore, the presented method can be used for helicopter rotor load calculation and aeroelastic analysis.
Key words: rotor; dynamics; damper; elastomeric material; nonlinearity
LI Ruirui , YU Zhihao , YANG Weidong , WU Shen . A time-domain computational method for dynamic properties and analysis of helicopter rotor elastomeric damper[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(6) : 1905 -1914 . DOI: 10.7527/S1000-6893.2014.0321
[1] Bramwell A R S, Done G T S. Bramwell's helicopter dynamics[M]. Oxford: Butterworth-Heinemann, 2001: 238-245.
[2] Yu Z H, Yang W D, Zhang C L. Aeroelasticity analysis of rotor multibody system based on Broyden method[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12): 2171-2182 (in Chinese). 虞志浩, 杨卫东, 张呈林. 基于Broyden法的旋翼多体系统气弹动力学分析[J]. 航空学报, 2012, 33(12): 2171-2182.
[3] Yeo H, Johnson W. Prediction of rotor structural loads with comprehensive analysis[J]. Journal of the American Helicopter Society, 2008, 53(2): 193-209.
[4] Jimmy C, Yeo H. Investigation of rotor blade structural dynamics and modeling based on measured airloads[J]. Journal of Aircraft, 2008, 45(5): 1631-1642.
[5] Abhishek A, Datta A, Chopra I. Prediction of UH-60A structural loads using multibody analysis and swashplate dynamics[J]. Journal of Aircraft, 2009, 46(2): 474-490.
[6] Gandhi F, Chopra I. A time-domain non-linear viscoelastic damper model[J]. Smart Materials and Structures, 1996, 5(5): 517-528.
[7] Hu G C, Liu Q, Liu X Y. Influence of nonlinear hydraulic lag damper on scaled rotor ground resonance[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11): 2182-2188 (in Chinese). 胡国才, 柳泉, 刘湘一. 液压阻尼器对模型旋翼地面共振的影响[J]. 航空学报, 2010, 31(11): 2182-2188.
[8] Felker F, Lau B. Nonlinear behavior of an elastomeric lag damper undergoing dual frequency motion and its effect on rotor dynamic[J]. Journal of the American Helicopter Society, 1987, 32(4): 45-53.
[9] Muhr A H. Modeling the stress-strain behavior of rubber [J]. Rubber Chemistry and Technology, 2005, 78(3): 391-425.
[10] Wei H, Norman M W. Rate-dependent elastoslide model for single and dual frequency MR lag damper behavior[J]. International Journal of Modern Physics, 2005, 19(7): 1527-1533.
[11] Grilli R, Krishnan R. Mechanisms-based analysis of filled elastomeric dampers under single and dual frequency excitations[J]. Journal of the American Helicopter Society, 2008, 53(3): 252-266.
[12] Changkuan J. Modeling friction phenomena and elasto-meric dampers in multibody dynamics analysis[D]. Georgia: Georgia Institute of Technology, 2009.
[13] Chazeau L, Brown J D, Yanyo L C. Modulus recovery kinetics and other insights into the payne effect for filled elastomers[J]. Polymer Composites, 2000, 21(2): 202-222.
[14] Wu Q Y, Wu J A. Polymer rheology[M]. Beijing: Higher Education Press, 2010: 73-97 (in Chinese). 吴其晔, 巫静安. 高分子材料流变学[M]. 北京: 高等教育出版社, 2010: 73-97.
[15] Yuan L W. Rheology[M]. Beijing: Science Press, 1986:49-92 (in Chinese). 袁龙蔚. 流变力学[M]. 北京: 科学出版社, 1986: 49-92.
[16] Miehe C, Keck J. Superimposed finite elastic viscoelastic plastoelastic stress response with damage in filled rubbery polymers, experiments, modeling and algorithmic implementation[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(2): 323-365.
[17] Chagnon G, Marckmann G. A comparison of the hartsmith model with arruda-boyce and gent formulations for rubber elasticity[J]. Rubber Chemistry and Technology, 2004, 77(4): 724-735.
[18] Drozdov A D, Dorfmann A. A micro-mechanical model for the response of filled elastomers at finite strains[J]. International Journal of Plasticity, 2003, 19(7): 1037-1067.
[19] Wei H, Norman M W. Distributed rate-dependent elastoslide model for elastomeric lag dampers[J]. Journal of Aircraft, 2007, 44(6): 1972-1984.
[20] Wu J, Shangguan W B. Computational method for dynamic properties of rubber isolators using hyperelastic viscoelastic plastoelastic constitutive model[J]. Journal of Mechanical Engineering, 2010, 46(14): 109-114 (in Chinese). 吴杰, 上官文斌. 采用超弹性-黏弹性-弹塑性本构模型的橡胶隔振器动态特性计算方法[J]. 机械工程学报, 2010, 46(14): 109-114.
[21] Ferry J D. Viscoelastic properties of polymers[M]. New York: John Wiley & Sons, 1961: 116-129.
[22] Brackbill C R. Helicopter rotor aeroelastic analysis using a refine elastomeric damper model[D]. State College: Pennsylvania State University, 2000.
[23] Li R R, Yang W D, Yu Z H. Multiple parameters dynamic modeling and analysis of helicopter rotor multi-layer elastomeric damper[J]. Journal of Aerospace Power, 2014, 29(4): 844-851 (in Chinese). 李锐锐, 杨卫东, 虞志浩. 直升机旋翼多层层压黏弹阻尼器多参数动力学建模与分析方法[J]. 航空动力学报, 2014, 29(4): 844-851.
[24] Chan C, Liu G. Hysteresis identification and compen-sation using a genetic algorithm with adaptive search space[J]. Mechatronics, 2007, 17(7): 391-402.
[25] Trabia M B, Yim W, Saadeh M. Modeling of hysteresis and backlash for a smart fin with a piezoelectric[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(11): 1161-1176.
[26] Lesieutre G, Bianchini E. Time domain modeling of linear viscoelasticity using anelastic displacement fields[J]. Journal of Vibration and Acoustics, 1995, 117(4): 424-430.
/
〈 | 〉 |