ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Canonical decomposition approach for underdetermined blind separation of non-disjoint sources
Received date: 2014-09-22
Revised date: 2014-11-19
Online published: 2014-11-24
Supported by
Fundamental Research Funds for the Central Universities (K5051302018)
This paper proposes a method of underdetermined blind separation of non-disjoint sources (UBSS) based on fourth-order cumulant (FO) and tensor decomposition. By semi-invariance of high-order cumulant, the FO is presented as statistics of the observed signal as fourth-order tensor; hence the mixed matrix is estimated by tensor decomposition with line search alternating least square. Finally, with the estimated matrix, sources are recovered by minimum mean-squared error-based beamforming. Simulations illustrate the validity of the method and show that the proposed method outperforms the existing methods in performance significantly.
AI Xiaofan , LUO Yongjiang , ZHAO Guoqing . Canonical decomposition approach for underdetermined blind separation of non-disjoint sources[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(10) : 3393 -3400 . DOI: 10.7527/S1000-6893.2014.0319
[1] Bofill P, Zibulevsky M. Underdetermined blind source separation using sparse representations[J]. Signal processing, 2001, 81(11): 2353-2362.
[2] Fu N, Qiao L Y, Peng X Y. Blind recovery of mixing matrix with sparse sources based on improved K-means Clustering and hough transform[J]. Acta Electronica Sinica, 2009, 37(A04): 92-96 (in Chinese). 付宁, 乔立岩, 彭喜元. 基于改进 K-means 聚类和霍夫变换的稀疏源混合矩阵盲估计算法[J]. 电子学报, 2009, 37(A04): 92-96.
[3] Fu W H, Wang L, Ma L F. Improved laplace mixed model potential function algorithm for UBSS[J]. Journal of Xidian University, 2014, 41(6): 1-6 (in Chinese). 付卫红, 王璐, 马丽芬. 一种改进的势函数欠定盲源分离算法[J]. 西安电子科技大学学报, 2014, 41(6): 1-6.
[4] Chen X J, Cheng H, Tang B. Underdetermined blind radar signal separation based on ICA[J]. Journal of Electronics and Information Technology, 2010, 32(4): 919-924 (in Chinese). 陈晓军, 成昊, 唐斌. 基于ICA的雷达信号欠定盲分离算法[J]. 电子与信息学报, 2010, 32(4): 919-924.
[5] Zhang L, Yang J, Lu K, et al. Modified subspace method based on convex model for underdetermined blind speech separation[J]. IEEE Transactions on Consumer Electronics, 2014, 60(2): 225-232.
[6] Wang X, Huang Z, Zhou Y. Underdetermined DOA estimation and blind separation of non-disjoint sources in time-frequency domain based on sparse representation method[J]. Journal of Systems Engineering and Electronics, 2014, 25(1): 17-25.
[7] Abrard F, Deville Y. A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources[J]. Signal Processing, 2005, 85(7): 1389-1403.
[8] Kim S G, Yoo C D. Underdetermined blind source separation based on subspace representation[J]. IEEE Transactions on Signal Processing, 2009, 57(7): 2604-2614.
[9] Bao G, Ye Z, Xu X, et al. A compressed sensing approach to blind separation of speech mixture based on a two-layer sparsity model[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(5): 899-906.
[10] Lu F B, Huang Z T, Peng G, et al. Underdetermined blind source separation (UBSS): A time-frequency approach[J]. Acta Electronica Sinica, 2011, 39(9): 2067-2072 (in Chinese). 陆凤波, 黄知涛, 彭耿, 等. 基于时频分布的欠定混叠盲分离[J]. 电子学报, 2011, 39(9): 2067-2072.
[11] Ferréol A, Albera L, Chevalier P. Fourth-order blind identification of underdetermined mixtures of sources (FOBIUM)[J]. IEEE Transactions on Signal Processing, 2005, 53(5): 1640-1653.
[12] de Lathauwer L, Castaing J, Cardoso J. Fourth-order cumulant-based blind identification of underdetermined mixtures[J]. IEEE Transactions on Signal Processing, 2007, 55(6): 2965-2973.
[13] Ge S N, Han M. Fourth-order cumulant of tensor decomposition method for blind identification of underdetermined separation[J]. Acta Electronica Sinica, 2014, 42(5): 992-997 (in Chinese). 葛素楠, 韩敏. 基于四阶累积张量方法的欠定盲源信号分离[J]. 电子学报, 2014, 42(5): 992-997.
[14] Georgiev P, Theis F, Cichocki A. Sparse component analysis and blind source separation of underdetermined mixtures[J] . IEEE Transactions on Neural Networks, 2005, 16(4) : 992-996.
[15] Kolda T G, Bader B W. Tensor decompositions and applications[J]. SIAM Review, 2009, 51(3): 455-500.
[16] de Lathauwer L. A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization[J]. SIAM Journal on Matrix Analysis and Applications, 2006, 28(3): 642-666.
[17] Rajih M, Comon P, Harshman R A. Enhanced line search: A novel method to accelerate PARAFAC[J]. SIAM Journal on Matrix Analysis and Applications, 2008, 30(3): 1128-1147.
[18] Nion D, de Lathauwer L. An enhanced line search scheme for complex-valued tensor decompositions: Application in DS-CDMA[J]. Signal Processing, 2008, 88(3): 749-755.
[19] Koldovsky Z, Tichavsky P, Phan A H, et al. A two-stage MMSE beamformer for underdetermined signal separation[J]. IEEE Signal Processing Letters, 2013, 20(12): 1227-1230.
/
〈 | 〉 |