Electronics and Control

Canonical decomposition approach for underdetermined blind separation of non-disjoint sources

  • AI Xiaofan ,
  • LUO Yongjiang ,
  • ZHAO Guoqing
Expand
  • Key Laboratory of Electronic Information Countermeasure and Simulation Technology, Ministry of Education, Xidian University, Xi'an 710071, China

Received date: 2014-09-22

  Revised date: 2014-11-19

  Online published: 2014-11-24

Supported by

Fundamental Research Funds for the Central Universities (K5051302018)

Abstract

This paper proposes a method of underdetermined blind separation of non-disjoint sources (UBSS) based on fourth-order cumulant (FO) and tensor decomposition. By semi-invariance of high-order cumulant, the FO is presented as statistics of the observed signal as fourth-order tensor; hence the mixed matrix is estimated by tensor decomposition with line search alternating least square. Finally, with the estimated matrix, sources are recovered by minimum mean-squared error-based beamforming. Simulations illustrate the validity of the method and show that the proposed method outperforms the existing methods in performance significantly.

Cite this article

AI Xiaofan, LUO Yongjiang, ZHAO Guoqing. Canonical decomposition approach for underdetermined blind separation of non-disjoint sources[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(10): 3393-3400. DOI: 10.7527/S1000-6893.2014.0319

References

[1] Bofill P, Zibulevsky M. Underdetermined blind source separation using sparse representations[J]. Signal processing, 2001, 81(11): 2353-2362.
[2] Fu N, Qiao L Y, Peng X Y. Blind recovery of mixing matrix with sparse sources based on improved K-means Clustering and hough transform[J]. Acta Electronica Sinica, 2009, 37(A04): 92-96 (in Chinese). 付宁, 乔立岩, 彭喜元. 基于改进 K-means 聚类和霍夫变换的稀疏源混合矩阵盲估计算法[J]. 电子学报, 2009, 37(A04): 92-96.
[3] Fu W H, Wang L, Ma L F. Improved laplace mixed model potential function algorithm for UBSS[J]. Journal of Xidian University, 2014, 41(6): 1-6 (in Chinese). 付卫红, 王璐, 马丽芬. 一种改进的势函数欠定盲源分离算法[J]. 西安电子科技大学学报, 2014, 41(6): 1-6.
[4] Chen X J, Cheng H, Tang B. Underdetermined blind radar signal separation based on ICA[J]. Journal of Electronics and Information Technology, 2010, 32(4): 919-924 (in Chinese). 陈晓军, 成昊, 唐斌. 基于ICA的雷达信号欠定盲分离算法[J]. 电子与信息学报, 2010, 32(4): 919-924.
[5] Zhang L, Yang J, Lu K, et al. Modified subspace method based on convex model for underdetermined blind speech separation[J]. IEEE Transactions on Consumer Electronics, 2014, 60(2): 225-232.
[6] Wang X, Huang Z, Zhou Y. Underdetermined DOA estimation and blind separation of non-disjoint sources in time-frequency domain based on sparse representation method[J]. Journal of Systems Engineering and Electronics, 2014, 25(1): 17-25.
[7] Abrard F, Deville Y. A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources[J]. Signal Processing, 2005, 85(7): 1389-1403.
[8] Kim S G, Yoo C D. Underdetermined blind source separation based on subspace representation[J]. IEEE Transactions on Signal Processing, 2009, 57(7): 2604-2614.
[9] Bao G, Ye Z, Xu X, et al. A compressed sensing approach to blind separation of speech mixture based on a two-layer sparsity model[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(5): 899-906.
[10] Lu F B, Huang Z T, Peng G, et al. Underdetermined blind source separation (UBSS): A time-frequency approach[J]. Acta Electronica Sinica, 2011, 39(9): 2067-2072 (in Chinese). 陆凤波, 黄知涛, 彭耿, 等. 基于时频分布的欠定混叠盲分离[J]. 电子学报, 2011, 39(9): 2067-2072.
[11] Ferréol A, Albera L, Chevalier P. Fourth-order blind identification of underdetermined mixtures of sources (FOBIUM)[J]. IEEE Transactions on Signal Processing, 2005, 53(5): 1640-1653.
[12] de Lathauwer L, Castaing J, Cardoso J. Fourth-order cumulant-based blind identification of underdetermined mixtures[J]. IEEE Transactions on Signal Processing, 2007, 55(6): 2965-2973.
[13] Ge S N, Han M. Fourth-order cumulant of tensor decomposition method for blind identification of underdetermined separation[J]. Acta Electronica Sinica, 2014, 42(5): 992-997 (in Chinese). 葛素楠, 韩敏. 基于四阶累积张量方法的欠定盲源信号分离[J]. 电子学报, 2014, 42(5): 992-997.
[14] Georgiev P, Theis F, Cichocki A. Sparse component analysis and blind source separation of underdetermined mixtures[J] . IEEE Transactions on Neural Networks, 2005, 16(4) : 992-996.
[15] Kolda T G, Bader B W. Tensor decompositions and applications[J]. SIAM Review, 2009, 51(3): 455-500.
[16] de Lathauwer L. A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization[J]. SIAM Journal on Matrix Analysis and Applications, 2006, 28(3): 642-666.
[17] Rajih M, Comon P, Harshman R A. Enhanced line search: A novel method to accelerate PARAFAC[J]. SIAM Journal on Matrix Analysis and Applications, 2008, 30(3): 1128-1147.
[18] Nion D, de Lathauwer L. An enhanced line search scheme for complex-valued tensor decompositions: Application in DS-CDMA[J]. Signal Processing, 2008, 88(3): 749-755.
[19] Koldovsky Z, Tichavsky P, Phan A H, et al. A two-stage MMSE beamformer for underdetermined signal separation[J]. IEEE Signal Processing Letters, 2013, 20(12): 1227-1230.

/