ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Flutter characteristics for aircraft all-movable horizontal tail through wind tunnel test
Received date: 2014-07-30
Revised date: 2014-09-07
Online published: 2014-11-15
Supported by
National Natural Science Foundation of China(91330206)
Flutter wind tunnel test is the main technique in the flutter design process for the high maneuver aircraftall-movable horizontal tail. The low-speed flutter model of an all-movable horizontal tail has two kinds of configurations during wind tunnel test (single horizontal tail and horizontal tail with fixed rear fuselage). In low-speed wind tunnel, the basic flutter mode of the horizontal tail and the aerodynamic influence of the rear fuselage are investigated and verified. A semi-span dynamic scaled flutter model is used in transonic wind tunnel. The effect of Mach number and the aerodynamic influence of wing on the flutter boundary are investigated and verified. In this paper, details of flutter models' design are shown, and the wind tunnel test results indicate full flutter characteristics of the all-movable horizontal tail. Especially in transonic flutter wind tunnel test, the effect of mass parameter (Newton number) on flutter boundary is investigated using flutter model with different mass overload factors. Wind tunnel test results show that the flutter characteristic of the all-movable horizontal tail must consider the rear fuselage elastic support. Different configurations of flutter model are used to consider the influences of fuselage, wing and vertical fin. Transonic flutter model has to consider the mass overload factor. In general, all the flutter characteristics for the all-movable horizontal tail obtained through wind tunnel test could be taken as a reference in other aircraft design.
QIAN Wei , ZHANG Guijiang , LIU Zhongkun . Flutter characteristics for aircraft all-movable horizontal tail through wind tunnel test[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(4) : 1093 -1102 . DOI: 10.7527/S1000-6893.2014.0250
[1] GJB 67. 7A—2008, military airplane structural strength specification part 7: aeroelasticity[S]. Beijing: The General Armaments Department Military Standard Publication Distribution Department, 2008: 8-10 (in Chinese). GJB 67. 7A—2008, 军用飞机结构强度规范第7部分:气动弹性[S]. 北京: 总装备部军标出版发行部, 2008: 8-10.
[2] Livne E. Future of airplane aeroelasticity[J]. Journal of Aircraft, 2003, 40(6): 1066-1092.
[3] Yurkovich R. Flutter of a stabilator with a snag leading edge, AIAA-2010-2551[R]. Reston: AIAA, 2010.
[4] Yurkovich R. Flutter mechanisms of a stabilator with a snag leading edge, AIAA-2011-1847[R]. Reston: AIAA, 2011.
[5] Anderson W D, Mortara S. F-22 aeroelastic design and test validation, AIAA-2007-1764[R]. Reston: AIAA, 2007.
[6] Rivera J A, Florance J R. Contribution of transonic dynamics tunnel testing to airplane flutter clearance, AIAA-2000-1768[R]. Reston: AIAA, 2000.
[7] Chedrik V V, Ishmuratov F Z, Zichenkov M C. Optimization approach to design of aeroelastic dynamically-scaled models of aircraft, AIAA-2004-4642[R]. Reston: AIAA, 2004.
[8] Булычев Г А. О влиянии массового параметра на флаттрные характеристики скоростного самолета и особенности их определения в тробном эксперименте[J]. Технина воздушного флота, 1992(2): 30-37.
[9] ЛЫЩИНСКИЙ В В. Моделирование флаттера в аэродинамических трубах[M].Moscow: Издателиство физико-математической литературы, 2009: 61-65.
[10] Guan D. Airplane aeroelasticity manual[M]. Beijing: Aviation Industriy Press, 1994: 215-238 (in Chinese). 管德.飞机气动弹性力学手册[M]. 北京: 航空工业出版社, 1994: 215-238.
[11] Lü B, Liu D G, Xie C C, et al. Optimization designing method of wing flutter model for low-speed wind tunnel test[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(12): 163-208 (in Chinese). 吕斌, 刘德广, 谢长川, 等. 机翼低速风洞试验颤振模型优化设计方法[J]. 北京航空航天大学学报, 2006, 32(12): 163-208.
[12] Luo W K, Tan S G, Xie H Q, et al. Research on methods used to determine flutter model design factors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2383-2390 (in Chinese). 罗务奎, 谭申刚, 谢怀强, 等. 确定颤振模型设计参数的方法研究[J]. 航空学报, 2013, 34(10): 2383-2390.
[13] Wu Q, Wan Z Q, Yang C. Design optimization of scaled flutter model considering structural dynamics and flutter constraints[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1210-1216 (in Chinese). 吴强, 万志强, 杨超. 考虑结构动力学与颤振约束的颤振缩比模型优化设计[J]. 航空学报, 2011, 32(7): 1210-1216.
[14] Luo J Q. A study on the stiffness simulation calculation method of flutter models of after body and Horizontal Tail of a new type aeroplane[J]. Journal of Nanjing Aeronautical Institute, 1991, 23(2): 121-123 (in Chinese). 罗家泉. 某型机后机身平尾颤振模型设计刚度模拟的探讨[J]. 南京航空学院学报,1991, 23(2): 121-123.
[15] Zhao D Y. An overview of the whole aircraft transonic flutter wind tunnel test[C]//Proceedings of the Seventh National Aeroelastic Congress. Huzhou: China Aeromechanics Society, 2001: 28-33 (in Chinese). 赵德玉. 全机跨音速颤振风洞试验方法介绍[C]//第七届全国空气弹性交流会论文集. 湖州:中国空气动力学会,2001: 28-33.
[16] Rui W, Yi F, Du N, et al. Study on flow field control technique of flutter test in 2.4 m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanic, 2012, 26(6): 83-86 (in Chinese). 芮伟, 易凡, 杜宁, 等. 2.4 m跨声速风洞颤振试验流场控制技术研究[J]. 实验流体力学, 2012, 26(6): 83-86.
[17] Qian W, Wang B, Zhao T M. Design, manufacture and wind tunnel test of an whole aircraft structure similar transonic flutter model[J]. Journal of Vibration Engineering, 2010, 23(S): 304-308 (in Chinese). 钱卫, 王标, 赵铁铭. 全机结构相似跨声速颤振模型设计、制造与风洞试验[J]. 振动工程学报, 2010, 23(增刊): 304-308.
/
〈 | 〉 |